Simulation

Vasileios (Bill) Katsianos

September 2023

Contents

1 Random Variable Generation 1
2 Monte Carlo Method 49
3 Discrete-Event Simulation 66
4 Variance Reduction Techniques 84
5 Markov Chain Monte Carlo Methods 121
6 Bootstrap Method 156

1 Random Variable Generation

Inverse Transform Method

Definition 1.1. Let F be a CDF with support S. We define the generalized inverse of F as $F^{-}:[0,1] \rightarrow S$ with $F^{-}(u)=\inf \{x \in S: F(x) \geqslant u\}$.

Note 1.1. According to the definition of the generalized inverse F^{-}and the fact that the CDF F is an increasing function, we infer that $F(x) \geqslant u \Leftrightarrow F^{-}(u) \leqslant x$.

Theorem 1.1. Let $U \sim \operatorname{Unif}(0,1)$. Then, the random variable $X=F^{-}(U)$ has CDF F.
Proof. We know that $F_{U}(u)=\mathbb{P}(U \leqslant u)=u$ for $u \in[0,1]$. For $x \in S$, we calculate that:

$$
F_{X}(x)=\mathbb{P}(X \leqslant x)=\mathbb{P}\left[F^{-}(U) \leqslant x\right]=\mathbb{P}[F(x) \geqslant U]=F_{U}(F(x))=F(x)
$$

Absolutely Continuous Random Variable Genetation

Note 1.2. If the CDF F is absolutely continuous, then $F^{-} \equiv F^{-1}$.
Example 1.1. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Unif}[a, b]$. For $x \in[a, b]$, we calculate that:

$$
F(x)=\frac{x-a}{b-a}, \quad F^{-1}(u)=(b-a) u+a .
$$

$\mathrm{n}=10000$
$\mathrm{a}=-1$
$\mathrm{b}=4$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=(b-a) * U+a$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dunif (x, a, b), add = TRUE, col = "red", lwd = 2)

Example 1.2. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\lambda)$. For $x>0$, we calculate that:

$$
F(x)=1-e^{-\lambda x}, \quad F^{-1}(u)=-\frac{1}{\lambda} \log (1-u)
$$

$\mathrm{n}=10000$
lambda $=2$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=-\log (1-U) / l a m b d a$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve (dexp(x, lambda), add = TRUE, col = "red", lwd = 2)

Lemma 1.1. If $U \sim \operatorname{Unif}[0,1]$, then $V=1-U \sim \operatorname{Unif}[0,1]$.
Proof. For $v \in[0,1]$, we calculate that:

$$
F_{V}(v)=\mathbb{P}(V \leqslant v)=\mathbb{P}(1-U \leqslant v)=\mathbb{P}(U \geqslant 1-v)=1-\mathbb{P}(U \leqslant 1-v)=1-(1-v)=v=F_{U}(v)
$$

$\mathrm{n}=10000$
lambda = 2
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
X $=-\log (U) / l a m b d a$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve (dexp(x, lambda), add = TRUE, col = "red", lwd = 2)

Lemma 1.2. If $X \sim \operatorname{Exp}(\lambda)$ and $\mu>0$, then the random variables $Y=(X \mid X>\mu)$ and $W=X+\mu$ are identically distributed.

Proof. First, we know that $\mathbb{P}(X>\mu)=1-F_{X}(\mu)=e^{-\lambda \mu}$. For $x>\mu$, we calculate that:

$$
\begin{gathered}
F_{Y}(x)=\mathbb{P}(X \leqslant x \mid X>\mu)=\frac{\mathbb{P}(X \leqslant x, X>\mu)}{\mathbb{P}(X>\mu)}=\frac{F_{X}(x)-F_{X}(\mu)}{F_{X}(\mu)}=\frac{e^{-\lambda \mu}-e^{-\lambda x}}{e^{-\lambda \mu}}=1-e^{-\lambda(x-\mu)}, \\
F_{W}(x)=\mathbb{P}(W \leqslant x)=\mathbb{P}(X+\mu \leqslant x)=F_{X}(x-\mu)=1-e^{-\lambda(x-\mu)} .
\end{gathered}
$$

Note 1.3. The previous lemma is a consequence of the memoryless property of the exponential distribution.
Example 1.3. Let $X \sim \operatorname{Exp}(\lambda)$ and $\mu>0$. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the conditional distribution of X given that $X>\mu$.
$\mathrm{n}=10000$
lambda = 2
$\mathrm{mu}=1$
$\mathrm{U}=$ runif(n$)$
$X=m u-\log (U) / l a m b d a$

```
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dexp(x - mu, lambda), add = TRUE, col = "red", lwd = 2)
```


Example 1.4. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(k, \lambda)$ for $k \in \mathbb{N}$. Consider independent random variables $Y_{1}, \ldots, Y_{k} \sim \operatorname{Exp}(\lambda)$. Then, we know that $Y_{1}+\cdots+Y_{k} \sim \operatorname{Gamma}(k, \lambda)$.
$\mathrm{n}=10000$
$\mathrm{k}=2$
lambda $=2$
$\mathrm{U}=$ matrix (runif ($\mathrm{n} * \mathrm{k}$), n)
$Y=-\log (U) / l a m b d a$
X = rowSums (Y)
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve (dgamma(x, k, lambda), add = TRUE, col = "red", lwd = 2)

Example 1.5. For $x \in \mathbb{R}$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with the following PDF:

$$
f(x)=\frac{\lambda}{2} e^{-\lambda|x-\mu|}
$$

For $x \leqslant \mu$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant x)=\int_{-\infty}^{x} f(y) d y=\int_{-\infty}^{x} \frac{\lambda}{2} e^{-\lambda(\mu-y)} d y=\frac{1}{2} e^{-\lambda(\mu-x)} .
$$

For $x>\mu$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant \mu)+\mathbb{P}(\mu<X \leqslant x)=F(\mu)+\int_{\mu}^{x} \frac{\lambda}{2} e^{-\lambda(y-\mu)} d y=\frac{1}{2}-\frac{1}{2} e^{-\lambda(x-\mu)}+\frac{1}{2}=1-\frac{1}{2} e^{-\lambda(x-\mu)} .
$$

For $u \in[0, F(\mu)]=[0,0.5]$, we calculate that:

$$
F(x)=u \Leftrightarrow x=\mu+\frac{1}{\lambda} \log (2 u) .
$$

For $u \in(F(\mu), 1]=(0.5,1]$, we calculate that:

$$
F(x)=u \Leftrightarrow x=\mu-\frac{1}{\lambda} \log [2(1-u)] .
$$

Therefore, we infer that:

$$
F^{-1}(u)=\left\{\begin{array}{cl}
\mu+\frac{1}{\lambda} \log (2 u), & 0 \leqslant u \leqslant 0.5 \\
\mu-\frac{1}{\lambda} \log [2(1-u)], & 0.5<u \leqslant 1
\end{array}\right.
$$

$\mathrm{n}=10000$
lambda $=2$
$\mathrm{mu}=1$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{ifelse}(\mathrm{U}<=0.5, \mathrm{mu}+\log (2 * \mathrm{U}) / \operatorname{lambda}, \mathrm{mu}-\log (2 *(1-\mathrm{U})) / \operatorname{lambda})$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dexp(abs(x - mu), lambda)/2, add = TRUE, col = "red", lwd = 2)

Example 1.6. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with the following PDF:

$$
f(x)=\left\{\begin{array}{ll}
\frac{x-2}{2}, & 2 \leqslant x \leqslant 3 \\
\frac{6-x}{6}, & 3<x \leqslant 6
\end{array} .\right.
$$

For $x \in[2,3]$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant x)=\int_{2}^{x} f(y) d y=\int_{2}^{x} \frac{y-2}{2} d y=\frac{x^{2}}{4}-x+1 .
$$

For $x \in(3,6]$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant 3)+\mathbb{P}(3<X \leqslant x)=F(3)+\int_{3}^{x} \frac{6-y}{6} d y=\frac{1}{4}+x-\frac{x^{2}}{12}-\frac{9}{4}=-\frac{x^{2}}{12}+x-2 .
$$

For $u \in[0, F(3)]=[0,0.25]$, we calculate that:

$$
F(x)=u \Leftrightarrow x^{2}-4 x+4(1-u)=0 \Leftrightarrow x=\frac{4 \pm \sqrt{16 u}}{2}=2(1 \pm \sqrt{u}) .
$$

The solution $x=2(1-\sqrt{u}) \in[1,2]$ is rejected, so we infer that $x=2(1+\sqrt{u}) \in[2,3]$.
For $u \in(F(3), 1]=(0.25,1]$, we calculate that:

$$
F(x)=u \Leftrightarrow x^{2}-12 x+12(u+2)=0 \Leftrightarrow x=\frac{12 \pm \sqrt{48(1-u)}}{2}=2[3 \pm \sqrt{3(1-u)}] .
$$

The solution $x=2[3+\sqrt{3(1-u)}] \in[6,9)$ is rejected, so we infer that $x=2[3-\sqrt{3(1-u)}] \in(3,6]$. Therefore, we conclude that:

$$
F^{-1}(u)=\left\{\begin{array}{cl}
2(1+\sqrt{u}), & 0 \leqslant u \leqslant 0.25 \\
2[3-\sqrt{3(1-u)}], & 0.25<u \leqslant 1
\end{array} .\right.
$$

f = function(x) \{

ifelse($x>=2 \& x<3,(x-2) / 2$, ifelse $(x>=3 \& x<6,(6-x) / 6,0))$ \}
$\mathrm{n}=10000$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{ifelse}(\mathrm{U}<=0.25,2$ * (1 + sqrt(U)), 2 * (3 - sqrt(3 * (1 - U))))
hist $(X$, "FD", freq $=$ FALSE, main $=N A, x l a b=N A)$
curve $(f(x)$, add $=$ TRUE, col $=$ "red", $1 \mathrm{wd}=2$)

Example 1.7. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with $\operatorname{PDF} f(x)=1-|1-x|$ for $x \in[0,2]$.
For $x \in[0,1]$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant x)=\int_{0}^{x} f(y) d y=\int_{0}^{x} y d y=\frac{x^{2}}{2}
$$

For $x \in(1,2]$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant 1)+\mathbb{P}(1<X \leqslant x)=F(1)+\int_{1}^{x} 2-y d y=\frac{1}{2}+2 x-\frac{x^{2}}{2}-\frac{3}{2}=-\frac{x^{2}}{2}+2 x-1
$$

For $u \in[0, F(1)]=[0,0.5]$, we calculate that:

$$
F(x)=u \Leftrightarrow x^{2}=2 u \Leftrightarrow x= \pm \sqrt{2 u}
$$

The solution $x=-\sqrt{2 u} \in[-1,0]$ is rejected, so we infer that $x=\sqrt{2 u} \in[0,1]$.
For $u \in(F(1), 1]=(0.5,1]$, we calculate that:

$$
F(x)=u \Leftrightarrow x^{2}-4 x+2(u+1)=0 \Leftrightarrow x=\frac{4 \pm \sqrt{8(1-u)}}{2}=2 \pm \sqrt{2(1-u)} .
$$

The solution $x=2+\sqrt{2(1-u)} \in[2,3)$ is rejected, so we infer that $x=2-\sqrt{2(1-u)} \in(1,2]$. Therefore, we conclude that:

$$
F^{-1}(u)=\left\{\begin{array}{cl}
\sqrt{2 u}, & 0 \leqslant u \leqslant 0.5 \\
2-\sqrt{2(1-u)}, & 0.5<u \leqslant 1
\end{array}\right.
$$

$\mathrm{n}=50000$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=\operatorname{ifelse}(U<=0.5, \operatorname{sqrt}(2 * U), 2-\operatorname{sqrt}(2 *(1-U)))$
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(1 - abs (1 - x), add = TRUE, col = "red", lwd = 2)

Lemma 1.3. Consider the independent random variables $U, V \sim \operatorname{Unif}[0,1]$. Then, the random variable $X=U+V$ has PDF $f(x)=1-|1-x|$ for $x \in[0,2]$.

Proof. For $x \in[0,2]$, we calculate that:

$$
F_{X}(x)=\mathbb{P}(U+V \leqslant x)=\int_{0}^{1} \mathbb{P}(U \leqslant x-v) f_{V}(v) d v=\int_{0}^{1} F_{U}(x-v) d v
$$

We observe that:

$$
F_{U}(x-v)=\left\{\begin{array}{cc}
1, & v \leqslant x-1 \\
x-v, & x-1<v \leqslant x \\
0, & v>x
\end{array}\right.
$$

For $x \in[0,1]$, we infer that:

$$
F_{X}(x)=\int_{0}^{x} x-v d v=\frac{x^{2}}{2}
$$

For $x \in(1,2]$, we infer that:

$$
F_{X}(x)=\int_{0}^{x-1} 1 d v+\int_{x-1}^{1} x-v d v=x-1+x-\frac{1}{2}-x(x-1)+\frac{(x-1)^{2}}{2}=-\frac{x^{2}}{2}+2 x-1
$$

Therefore, we conclude that:

$$
f_{X}(x)=\left\{\begin{array}{cc}
x, & 0 \leqslant x \leqslant 1 \\
2-x, & 1<x \leqslant 2
\end{array}\right.
$$

We observe that $f_{X}(x)=1-|1-x|=f(x)$ for $x \in[0,2]$.
$\mathrm{n}=50000$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{U}+\mathrm{V}$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve (1 - abs (1 - x), add = TRUE, col = "red", lwd = 2)

Example 1.8. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Beta}(1, k)$. For $x \in[0,1]$, we know that $f(x)=k(1-x)^{k-1}$. We calculate that:

$$
F(x)=1-(1-x)^{k}, \quad F^{-1}(u)=1-(1-u)^{1 / k}
$$

$\mathrm{n}=10000$
$\mathrm{k}=3$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=1-U^{\wedge}(1 / k)$
hist (X, "FD", freq = FALSE, main $=N A, x \lim =c(0,1), x l a b=N A)$
curve (dbeta (x, 1, k), add = TRUE, col = "red", lwd = 2)

Lemma 1.4. Consider independent random variables Y_{i} with common support S and CDFs F_{i} for $i=1,2, \ldots, k$. Then,
i. The random variable $X=\max \left\{Y_{1}, \ldots, Y_{k}\right\}$ has the following CDF:

$$
F(x)=\prod_{i=1}^{k} F_{i}(x) .
$$

ii. The random variable $X=\min \left\{Y_{1}, \ldots, Y_{k}\right\}$ has the following CDF:

$$
F(x)=1-\prod_{i=1}^{k}\left[1-F_{i}(x)\right] .
$$

Proof. i. For $x \in S$, we calculate that:

$$
F(x)=\mathbb{P}\left(\max \left\{Y_{1}, \ldots, Y_{k}\right\} \leqslant x\right)=\mathbb{P}\left(Y_{1} \leqslant x, \ldots, Y_{k} \leqslant x\right)=\prod_{i=1}^{k} \mathbb{P}\left(Y_{i} \leqslant x\right)=\prod_{i=1}^{k} F_{i}(x) .
$$

ii. For $x \in S$, we calculate that:

$$
\begin{aligned}
F(x) & =\mathbb{P}\left(\min \left\{Y_{1}, \ldots, Y_{k}\right\} \leqslant x\right)=1-\mathbb{P}\left(\min \left\{Y_{1}, \ldots, Y_{k}\right\}>x\right) \\
& =1-\mathbb{P}\left(Y_{1}>x, \ldots, Y_{k}>x\right)=1-\prod_{i=1}^{k} \mathbb{P}\left(Y_{i}>x\right)=1-\prod_{i=1}^{k}\left[1-F_{i}(x)\right] .
\end{aligned}
$$

For $x \in[0,1]$, we observe that:

$$
F(x)=1-\prod_{i=1}^{k}(1-x)
$$

Consider the independent random variables $Y_{1}, \ldots, Y_{k} \sim \operatorname{Unif}[0,1]$ with CDF $F_{Y}(x)=x$ for $x \in[0,1]$. According to the previous lemma, we infer that the random variable $\min \left\{Y_{1}, \ldots, Y_{k}\right\}$ has CDF F.

```
n = 10000
k = 3
U = matrix(runif(n * k), n)
X = apply(U, 1, min)
hist(X, "FD", freq = FALSE, main = NA, xlim = c(0, 1), xlab = NA)
curve(dbeta(x, 1, k), add = TRUE, col = "red", lwd = 2)
```


Rejection Method

Consider a PDF f with bounded support $S=[0,1]$ and independent random variables $Y \sim \operatorname{Unif}[0,1], U \sim \operatorname{Unif}[0,1]$. We define $M=\max _{x \in[0,1]} f(x)$ and $V=M U \sim \operatorname{Unif}[0, M]$.

Note 1.4. Since f is a PDF with support $[0,1]$, it must hold that $M>1$.
Proposition 1.1. i. The random vector (Y, V) follows the bivariate uniform distribution on the rectangle with base $[0,1]$ and height $[0, M]$.
ii. The conditional distribution of the random vector (Y, V) given that $f(Y) \geqslant V$ is the bivariate uniform distribution in the area under the curve of f, i.e. on the set $\{(y, v) \in[0,1] \times[0, M]: f(y) \geqslant v\}$.
iii. The marginal distribution of Y given that $f(Y) \geqslant V$ has PDF f.

Proof. i. For $y \in[0,1]$ and $v \in[0, M]$, we calculate that:

$$
\begin{gathered}
F_{Y, V}(y, v)=\mathbb{P}(Y \leqslant y, V \leqslant v)=\mathbb{P}(Y \leqslant y) \mathbb{P}(V \leqslant v)=y \cdot \frac{v}{M} \\
f_{Y, V}(y, v)=\frac{\partial^{2} F_{Y, V}(y, v)}{\partial v \partial y}=1 \cdot \frac{1}{M}=\frac{1}{\int_{0}^{1} \int_{0}^{M} 1 d v d y}
\end{gathered}
$$

ii. For $y \in[0,1]$ and $v \in[0, M]$ with $f(y) \geqslant v$, we calculate that:

$$
\begin{gathered}
\mathbb{P}[f(Y) \geqslant V]=\int_{0}^{1} f_{Y}(y) \mathbb{P}[V \leqslant f(y)] d y=\int_{0}^{1} \frac{f(y)}{M} d y=\frac{1}{M} \int_{0}^{1} f(y) d y=\frac{1}{M}, \\
\mathbb{P}[Y \leqslant y, V \leqslant v, f(Y) \geqslant V]=\int_{0}^{y} f_{Y}(x) \mathbb{P}[V \leqslant v, V \leqslant f(x)] d x=\frac{1}{M} \int_{0}^{y} \min \{v, f(x)\} d x, \\
F_{Y, V \mid F(Y) \geqslant V}(y, v)=\mathbb{P}[Y \leqslant y, V \leqslant v \mid f(Y) \geqslant V]=\frac{\mathbb{P}[Y \leqslant y, V \leqslant v, f(Y) \geqslant V]}{\mathbb{P}[f(Y) \geqslant V]}=\int_{0}^{y} \min \{v, f(x)\} d x, \\
f_{Y, V \mid f(Y) \geqslant V}(y, v)=\frac{\partial^{2} F_{Y, V \mid F(Y) \geqslant V}(y, v)}{\partial v \partial y}=\frac{\partial \min \{v, f(y)\}}{\partial v}=\frac{\partial v}{\partial v}=1=\frac{1}{\int_{S} \int_{0}^{f(y)} 1 d v d y} .
\end{gathered}
$$

iii. For $y \in[0,1]$, we calculate that:

$$
f_{Y \mid f(Y) \geqslant V}(y)=\int_{0}^{f(y)} f_{Y, V \mid f(Y) \geqslant V}(y, v) d v=\int_{0}^{f(y)} 1 d v=f(y) .
$$

Example 1.9. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Beta}(4,2)$. For $x \in[0,1]$, we know that $f(x)=20 x^{3}(1-x)$. For $x \in(0,1)$, we calculate that $f^{\prime}(x)=20 x^{2}(3-4 x)$. Therefore, we infer that $f^{\prime}(x)=0 \Leftrightarrow x=3 / 4$, which implies that $M=f(3 / 4)=135 / 64$.
$\mathrm{n}=1000$
$\mathrm{a}=4$
b $=2$
$M=135 / 64$
print(M)
\#\# [1] 2.109375
$\mathrm{Y}=\operatorname{runif}(\mathrm{n})$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\mathrm{M} * \mathrm{U}$
$\mathrm{I}=\operatorname{which}(\operatorname{dbeta}(\mathrm{Y}, \mathrm{a}, \mathrm{b})>=\mathrm{V})$
J = which (dbeta(Y, a, b) < V)
curve(dbeta(x, a, b), lwd = 2, xlab = "Y", ylab = "V")
curve (M * dunif(x), add = TRUE, col = "purple", lwd = 2)
points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)
points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)
legend("topleft", c(expression(v == f(y)), expression(v == M), "Accepted", "Rejected"),
col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA, NA), lwd = c(2,
2 , NA, NA), pch $=c(N A, N A, 16,16), b g=" w h i t e ")$


```
Algorithm 1.1 Rejection Method for Bounded Support \(S=[0,1]\)
    Input: PDF \(f\) and sample size \(n\).
```

1: We calculate $M=\max _{x \in[0,1]} f(x)$.
2: For $i=1,2, \ldots, n$, we iterate the following steps:
i: We generate $Y \sim \operatorname{Unif}[0,1], U \sim \operatorname{Unif}[0,1]$ and let $V=M U \sim \operatorname{Unif}[0,1]$.
ii: If $f(Y) \geqslant V$, we let $X_{i}=Y$. Otherwise, we return to step 2 .
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the $\operatorname{PDF} f$.
$\mathrm{n}=10000$
$\mathrm{a}=4$
b $=2$
M = 135/64
$\mathrm{X}=$ numeric (n)
for (i in 1:n) \{
$\mathrm{Y}=$ runif(1)
$\mathrm{U}=$ runif(1)
$\mathrm{V}=\mathrm{M} * \mathrm{U}$
while (dbeta(Y, a, b) < V) \{
$\mathrm{Y}=$ runif(1)
$\mathrm{U}=\mathrm{runif}(1)$
$\mathrm{V}=\mathrm{M} * \mathrm{U}$
\}
$X[i]=Y$
\}
hist (X, "FD", freq = FALSE, main $=N A, x \lim =c(0,1), x l a b=N A)$
curve(dbeta(x, a, b), add = TRUE, col = "red", lwd = 2)

Now, let f be a PDF with general support S and g be a proposal PDF with support $S_{g} \supseteq S$. Consider the independent random variables $Y \sim g$ and $U \sim \operatorname{Unif}[0,1]$. We define $M=\max _{x \in S} \frac{f(x)}{g(x)}$ and $V=M g(Y) U$.

Note 1.5. Since f and g are PDFs, it holds that $M>1$.
Proposition 1.2. i. The random vector (Y, V) follows the bivariate uniform distribution in the area under the curve of $M g$, i.e. on the set $\left\{(y, v) \in S_{g} \times[0, \infty]: M g(y) \geqslant v\right\}$.
ii. The conditional distribution of the random vector (Y, V) given that $f(Y) \geqslant V$ is the bivariate uniform distribution in the are under the curve of f, i.e. on the set $\{(y, v) \in S \times[0, \infty]: f(y) \geqslant v\}$.
iii. The marginal distribution of Y given that $f(Y) \geqslant V$ has PDF f.

Proof. i. For $y \in S_{g}$ and $v \in[0, \infty]$, we calculate that:

$$
\begin{gathered}
F_{Y, V}(y, v)=\mathbb{P}[Y \leqslant y, V \leqslant v]=\int_{-\infty}^{y} g(x) \mathbb{P}[M g(x) U \leqslant v] d x=\int_{-\infty}^{y} g(x) \cdot \frac{v}{M g(x)} d x=\frac{v}{M} \int_{-\infty}^{y} 1 d x \\
f_{Y, V}(y, v)=\frac{\partial^{2} F_{Y, V}(y, v)}{\partial v \partial y}=\frac{\partial}{\partial v} \frac{v}{M}=\frac{1}{M}=\frac{1}{\int_{S_{g}} \int_{0}^{M g(y)} 1 d v d y} .
\end{gathered}
$$

ii. For $y \in S$ and $v \in[0, \infty]$ with $f(y) \geqslant v$, we calculate that:

$$
\begin{gathered}
\mathbb{P}[f(Y) \geqslant V]=\int_{S} g(y) \mathbb{P}[M g(y) U \leqslant f(y)] d y=\int_{S} g(y) \cdot \frac{f(y)}{M g(y)} d y=\frac{1}{M} \int_{S} f(y) d y=\frac{1}{M}, \\
\mathbb{P}[Y \leqslant y, V \leqslant v, f(Y) \geqslant V]=\int_{-\infty}^{y} g(x) \mathbb{P}[M g(x) U \leqslant v, M g(x) U \leqslant f(x)] d x=\frac{1}{M} \int_{-\infty}^{y} \min \{v, f(x)\} d x \\
F_{Y, V \mid F(Y) \geqslant V}(y, v)=\mathbb{P}[Y \leqslant y, V \leqslant v \mid f(Y) \geqslant V]=\frac{\mathbb{P}[Y \leqslant y, V \leqslant v, f(Y) \geqslant V]}{\mathbb{P}[f(Y) \geqslant V]}=\int_{-\infty}^{y} \min \{v, f(x)\} d x, \\
f_{Y, V \mid f(Y) \geqslant V}(y, v)=\frac{\partial^{2} F_{Y, V \mid F(Y) \geqslant V}(y, v)}{\partial v \partial y}=\frac{\partial \min \{v, f(y)\}}{\partial v}=\frac{\partial v}{\partial v}=1=\frac{1}{\int_{S} \int_{0}^{f(y)} 1 d v d y} .
\end{gathered}
$$

iii. For $y \in S$, we calculate that:

$$
f_{Y \mid f(Y) \geqslant V}(y)=\int_{0}^{f(y)} f_{Y, V \mid f(Y) \geqslant V}(y, v) d v=\int_{0}^{f(y)} 1 d v=f(y)
$$

Example 1.10. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(2,0.5) \equiv \chi_{4}^{2}$. If we consider a random variable $X \sim \operatorname{Gamma}(2,0.5)$, then we observe that $\mathbb{E}(X)=\frac{2}{0.5}=4$. Let $Y \sim \operatorname{Exp}(1 / 4)$ be a random variable with proposal PDF $g(x)=\frac{1}{4} e^{-x / 4}$ for $x>0$. We observe that $\mathbb{E}(Y)=\frac{1}{1 / 4}=4$. We define:

$$
h(x)=\frac{f(x)}{g(x)}=x e^{-x / 4}
$$

We calculate that:

$$
h^{\prime}(x)=\left(1-\frac{x}{4}\right) e^{-x / 4}
$$

Therefore, we infer that $h^{\prime}(x)=0 \Leftrightarrow x=4$, which implies that $M=h(4)=4 e^{-1}$.
$\mathrm{n}=1000$
$\mathrm{a}=2$
lambda $=0.5$
$M=4 * \exp (-1)$
print (M)
\#\# [1] 1.471518
$\mathrm{W}=\operatorname{runif}(\mathrm{n})$
$\mathrm{Y}=-\log (\mathrm{W}) * a / l a m b d a$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\mathrm{Y}, \operatorname{lambda} / \mathrm{a}) * \mathrm{U}$
$\mathrm{I}=$ which $(\operatorname{dgamma}(\mathrm{Y}, \mathrm{a}, \operatorname{lambda})>=\mathrm{V})$
$\mathrm{J}=$ which $(\operatorname{dgamma}(\mathrm{Y}, \mathrm{a}, \operatorname{lambda})<\mathrm{V})$
curve($\mathrm{M} * \operatorname{dexp}(\mathrm{x}, \operatorname{lambda/a),~xlim}=c(0, \max (Y)), ~ c o l=" p u r p l e ", ~ l w d=2, ~ x l a b=" Y "$,
$y l a b=" V ")$
curve (dgamma(x, a, lambda), add = TRUE, lwd = 2)
points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)
points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)
legend("topright", $c(e x p r e s s i o n(v==f(y))$, expression(v == M \%.\% g(y)), "Accepted",
"Rejected"), col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA,
NA) , lwd $=c(2,2, N A, N A), p c h=c(N A, N A, 16,16))$

Algorithm 1.2 Rejection Sampling for General Support
 Input: PDF f, proposal PDF g and sample size n.

1: We calculate that $M=\max _{x \in \mathbb{R}} \frac{f(x)}{g(x)}$.
2: For $i=1,2, \ldots, n$, we iterate the following steps:
i: We generate $Y \sim g, U \sim \operatorname{Unif}[0,1]$ and let $V=M g(Y) U$.
ii: If $f(Y) \geqslant V$, we let $X_{i}=Y$. Otherwise, we return to step 2 .
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the $\operatorname{PDF} f$.
$\mathrm{n}=10000$
$\mathrm{a}=2$
lambda $=0.5$
$M=4 * \exp (-1)$
$\mathrm{X}=$ numeric (n)
for (i in 1:n) \{
$\mathrm{W}=$ runif (1)
$\mathrm{Y}=-\log (\mathrm{W}) * a / \operatorname{lambda}$
$\mathrm{U}=\operatorname{runif}(1)$
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\mathrm{Y}, \operatorname{lambda} / \mathrm{a}) * \mathrm{U}$
while (dgamma(Y, a, lambda) < V) \{
W = runif(1)
$Y=-\log (W) * a / l a m b d a$
U = runif(1)
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\mathrm{Y}, \operatorname{lambda} / \mathrm{a}) * \mathrm{U}$
\}
$X[i]=Y$
\}
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)

```
curve(dgamma(x, a, lambda), add = TRUE, col = "red", lwd = 2)
```


Theorem 1.2. i. The acceptance probability of X_{i} given that $Y=y$ is equal to $\frac{f(y)}{M g(y)}$.
ii. The generation of X_{i} requires a finite number of iterations with probability 1 . The expected number of iterations until the generation of X_{i} is equal to M.

Proof. i. For $y \in S_{g}$, we calculate that:

$$
\mathbb{P}[f(Y) \geqslant V \mid Y=y]=\mathbb{P}[M g(y) U \leqslant f(y)]=\frac{f(y)}{M g(y)} .
$$

ii. We calculated that the acceptance probability of X_{i}, i.e. $\mathbb{P}[f(Y) \geqslant V]$, is equal to $\frac{1}{M}$. Since every attempt at generating X_{i} is independent of the previous ones and each of them succeeds with probability $\frac{1}{M}$, we infer that the number of iterations until the generation of X_{i} follows the geometric distribution with success probability $\frac{1}{M}$. Therefore, the expected number of iterations until the generation of X_{i} is given by the expectation of this geometric distribution, which is equal to M.

Note 1.6. The rejection method is more efficient when M is close to 1 . In this case, only a small number of iterations is required for the generation of X_{i}.

Example 1.11. More generally, we want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(a, \lambda)$. Consider a random variable $Y \sim \operatorname{Exp}(\mu)$ with proposal PDF $g_{\mu}(x)=\mu e^{-\mu x}$ for $x>0$. We define:

$$
h_{\mu}(x)=\frac{f(x)}{g_{\mu}(x)}=\frac{\frac{\lambda^{a}}{\Gamma(a)} x^{a-1} e^{-\lambda x}}{\mu e^{-\mu x}}=\frac{\lambda^{a}}{\mu \Gamma(a)} x^{a-1} e^{-(\lambda-\mu) x} .
$$

For $a>1$, we calculate that:

$$
\begin{gathered}
\frac{\partial h_{\mu}(x)}{\partial x}=\frac{\lambda^{a}}{\Gamma(a)} x^{a-2} e^{-(\lambda-\mu) x}[a-1-(\lambda-\mu) x], \\
\frac{\partial h_{\mu}(x)}{\partial x}=0 \Leftrightarrow x=\frac{a-1}{\lambda-\mu}, \\
M(\mu)=\max _{x \in \mathbb{R}} h_{\mu}(x)=h_{\mu}\left(\frac{a-1}{\lambda-\mu}\right)=\frac{\lambda^{a}}{\mu \Gamma(a)}\left(\frac{a-1}{\lambda-\mu}\right)^{a-1} e^{-(a-1)},
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial M(\mu)}{\partial \mu}=\frac{\lambda^{a}}{\mu \Gamma(a)}\left(\frac{a-1}{\lambda-\mu}\right)^{a-1}\left(-\frac{1}{\mu}+\frac{a-1}{\lambda-\mu}\right) e^{-(a-1)} \\
\frac{\partial M(\mu)}{\partial \mu}=0 \Leftrightarrow \mu=\frac{\lambda}{a} \\
M^{*}=\min _{\mu>0} M(\mu)=M\left(\frac{\lambda}{a}\right)=\frac{a^{a}}{\Gamma(a)} e^{-(a-1)}
\end{gathered}
$$

Therefore, the value of μ which minimizes the expected number of required iterations for the generation of a random variable from the Gamma (a, λ) distribution is equal to $\frac{\lambda}{a}$ and the minimum expected number of required iterations is equal to $\frac{a^{a}}{\Gamma(a)} e^{-(a-1)}$.
Note 1.7. We know that $\chi^{2}(\nu) \equiv \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{1}{2}\right)$. Therefore, the value of μ which minimizes the expected number of required iterations for the generation of a random variable from the $\chi^{2}(\nu)$ distribution for $\nu>2$ with proposal PDF $g(x)=\mu e^{-\mu x}$ for $x>0$ is equal to $\frac{1}{\nu}$ and the minimum expected number of required iterations is equal to $\left(\frac{\nu}{2}\right)^{\nu / 2} \frac{1}{\Gamma(\nu / 2)} e^{-(\nu-2) / 2}$.

Example 1.12. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. For $x \in \mathbb{R}$, we consider the proposal PDF:

$$
g_{\lambda}(x)=\frac{\lambda}{2} e^{-\lambda|x-\mu|}
$$

We define:

$$
h_{\lambda}(x)=\frac{f(x)}{g_{\lambda}(x)}=\frac{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}}{\frac{\lambda}{2} e^{-\lambda|x-\mu|}}=\sqrt{\frac{2}{\pi \sigma^{2}}} \frac{1}{\lambda} \exp \left\{\lambda|x-\mu|-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} .
$$

Since the function h is symmetric around $x=\mu$, we study its behavior for $x \geqslant \mu$. We calculate that:

$$
\begin{gathered}
\frac{\partial h_{\lambda}(x)}{\partial x}=\sqrt{\frac{2}{\pi \sigma^{2}}} \frac{1}{\lambda}\left(\lambda-\frac{x-\mu}{\sigma^{2}}\right) \exp \left\{\lambda(x-\mu)-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} \\
\frac{\partial h_{\lambda}(x)}{\partial x}=0 \Leftrightarrow x=\mu+\sigma^{2} \lambda \\
M(\lambda)=\max _{x \in \mathbb{R}} h_{\lambda}(x)=h_{\lambda}\left(\mu+\sigma^{2} \lambda\right)=\sqrt{\frac{2}{\pi \sigma^{2}}} \frac{1}{\lambda} e^{\sigma^{2} \lambda^{2} / 2} \\
\frac{\partial M(\lambda)}{\partial \lambda}=\sqrt{\frac{2}{\pi \sigma^{2}}}\left(\sigma^{2}-\frac{1}{\lambda^{2}}\right) e^{\sigma^{2} \lambda^{2} / 2} \\
\frac{\partial M(\lambda)}{\partial \lambda}=0 \Leftrightarrow \lambda=\frac{1}{\sigma} \\
M^{*}=\min _{\lambda>0} M(\lambda)=M\left(\frac{1}{\sigma}\right)=\sqrt{\frac{2 e}{\pi}}
\end{gathered}
$$

Therefore, the value of λ which minimizes the expected number of required iterations for the generation of a random variable from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution is equal to $\frac{1}{\sigma}$ and the minimum expected number of required iterations is equal to $\sqrt{2 e / \pi}$.
$\mathrm{n}=1000$
$\mathrm{mu}=1$
sigma $=2$
lambda $=1 /$ sigma

```
M = sqrt(2 * exp(1)/pi)
```

print(M)
\#\# [1] 1.315489
$\mathrm{W}=\operatorname{runif}(\mathrm{n})$
Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\operatorname{abs}(\mathrm{Y}-\mathrm{mu}), \mathrm{lambda}) / 2 * \mathrm{U}$
$\mathrm{I}=$ which $(\operatorname{dnorm}(\mathrm{Y}, \mathrm{mu}$, sigma) $>=\mathrm{V})$
J = which(dnorm(Y, mu, sigma) < V)
curve ($\mathrm{M} * \operatorname{dexp}(\operatorname{abs}(\mathrm{x}-\mathrm{mu}), \operatorname{lambda}) / 2, \mathrm{xlim}=\operatorname{range}(\mathrm{Y}), \mathrm{col}=$ "purple", lwd = 2, xlab = "Y", ylab = "V")
curve(dnorm(x, mu, sigma), add = TRUE, lwd = 2)
points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)
points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)
legend("topright", c(expression(v == f(y)), expression(v == M \%.\% g(y)), "Accepted", "Rejected"), col = c("black", "purple", "blue", "red"), lty = c(1, 1, NA, NA), $1 w d=c(2,2, N A, N A), p c h=c(N A, N A, 16,16))$

$\mathrm{n}=10000$
$\mathrm{mu}=1$
sigma = 2
lambda = 1/sigma
$M=\operatorname{sqrt}(2 * \exp (1) / p i)$
X = numeric(n)
for (i in 1:n) \{
$\mathrm{W}=$ runif(1)
$\mathrm{Y}=\mathrm{ifelse}(\mathrm{W}<=0.5, \mathrm{mu}+\log (2 * \mathrm{~W}) / \operatorname{lambda}, \mathrm{mu}-\log (2 *(1-\mathrm{W})) / \operatorname{lambda})$
U = runif(1)

```
    V = M * dexp(abs(Y - mu), lambda)/2 * U
    while (dnorm(Y, mu, sigma) < V) {
        W = runif(1)
        Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y - mu), lambda)/2 * U
    }
    X[i] = Y
}
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)
```


Let X be a random variable with absolutely continuous CDF G, PDF g, support S and $a, b \in S$ with $a<b$. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the conditional distribution of X given that $a \leqslant X \leqslant b$. We know that $\mathbb{P}(a \leqslant X \leqslant b)=G(b)-G(a)$. For $x \in[a, b]$, we calculate that:

$$
\begin{gathered}
F_{X \mid a \leqslant X \leqslant b}(x)=\mathbb{P}(X \leqslant x \mid a \leqslant X \leqslant b)=\frac{\mathbb{P}(X \leqslant x, a \leqslant X \leqslant b)}{\mathbb{P}(a \leqslant X \leqslant b)}=\frac{\mathbb{P}(a \leqslant X \leqslant x)}{\mathbb{P}(a \leqslant X \leqslant b)}=\frac{G(x)-G(a)}{G(b)-G(a)}, \\
f_{X \mid a \leqslant X \leqslant b}(x)=\frac{\partial F_{X \mid a \leqslant X \leqslant b}(x)}{\partial x}=\frac{g(x)}{G(b)-G(a)} .
\end{gathered}
$$

We observe that:

$$
\frac{f_{X \mid a \leqslant X \leqslant b}(x)}{g(x)}=\left\{\begin{array}{cc}
\frac{1}{G(b)-G(a)}, & x \in[a, b] \\
0, & x \notin[a, b]
\end{array}, \quad M=\max _{x \in S} \frac{f_{X \mid a \leqslant X \leqslant b}(x)}{g(x)}=\frac{1}{G(b)-G(a)} .\right.
$$

If $Y \sim g$ and $U \sim \operatorname{Unif}[0,1]$, then it follows that:

$$
\mathbb{P}\left[f_{X \mid a \leqslant X \leqslant b}(Y) \geqslant M g(Y) U \mid Y\right]=\frac{f_{X \mid a \leqslant X \leqslant b}(Y)}{M g(Y)}=\left\{\begin{array}{ll}
1, & Y \in[a, b] \\
0, & Y \notin[a, b]
\end{array} .\right.
$$

In other words, if the generated value Y from the PDF g lies on the given interval $[a, b]$, then it's accepted with
probability 1. Otherwise, it's rejected with probability 1. Therefore, the generation of the random variable U is redundant.

Example 1.13. Let $X \sim \operatorname{Gamma}(3,0.5), a=2$ and $b=10$. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the conditional distribution of X given that $a \leqslant X \leqslant b$.
$\mathrm{n}=1000$
$\mathrm{k}=2$
lambda $=0.5$
$\mathrm{a}=1$
b $=11$
$\mathrm{P}=\operatorname{pgamma}(\mathrm{b}, \mathrm{k}, \operatorname{lambda})-\operatorname{pgamma}(\mathrm{a}, \mathrm{k}, \mathrm{lambda})$
print (P)
\#\# [1] 0.883232
$M=1 / P$
print(M)
\#\# [1] 1.132205
$\mathrm{W}=\operatorname{matrix}($ runif $(\mathrm{n} * \mathrm{k})$, n$)$
$R=-\log (W) / l a m b d a$
Y = rowSums (R)
$\mathrm{U}=\mathrm{runif}(\mathrm{n})$
$\mathrm{V}=\mathrm{M} * \operatorname{dgamma}(\mathrm{Y}, \mathrm{k}, \operatorname{lambda}) * \mathrm{U}$
$\mathrm{I}=$ which ($\mathrm{Y}>=\mathrm{a} \& \mathrm{Y}<=\mathrm{b}$)
$\mathrm{J}=\mathrm{which}(\mathrm{Y}<\mathrm{a} \mid \mathrm{Y}>\mathrm{b})$
curve(M * dgamma(x, k, lambda), xlim = c(0, max(Y)), lwd = 2, xlab = "Y", ylab = "V")
points(Y[I], V[I], col = "blue", pch = 16, cex = 0.2)
points(Y[J], V[J], col = "red", pch = 16, cex = 0.2)
legend("topright", $c(e x p r e s s i o n(v==f(y)), ~ " A c c e p t e d ", ~ " R e j e c t e d "), ~ c o l ~=~ c(" b l a c k ", ~$
"blue", "red"), lty $=c(1, N A, N A), l w d=c(2, N A, N A), p c h=c(N A, 16$,
16))

Input: Proposal PDF g, interval $[a, b]$ and sample size n.
For $i=1,2, \ldots, n$, we iterate the following steps:
1: We generate $Y \sim g$.
2: If $Y \in[a, b]$, we let $X_{i}=Y$. Otherwise, we return to step 1 .
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$.
$\mathrm{n}=10000$
$\mathrm{k}=2$
lambda $=0.5$
$\mathrm{a}=1$
b $=11$
$\mathrm{M}=1 /(\operatorname{pgamma}(\mathrm{b}, \mathrm{k}, \operatorname{lambda})-\operatorname{pgamma}(\mathrm{a}, \mathrm{k}, \mathrm{lambda}))$
X = numeric(n)
for (i in 1:n) \{
$\mathrm{U}=$ runif(k)
$R=-\log (U) / l a m b d a$
$\mathrm{Y}=\operatorname{sum}(\mathrm{R})$
while ($\mathrm{Y}<\mathrm{a} \| \mathrm{Y}>\mathrm{b}$) \{
$\mathrm{U}=$ runif (k)
$R=-\log (U) / l a m b d a$
$\mathrm{Y}=\operatorname{sum}(\mathrm{R})$
\}
$X[i]=Y$
\}
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve ($\mathrm{M} * \operatorname{dgamma}(\mathrm{x}, \mathrm{k}, \operatorname{lambda})$, add = TRUE, col = "red", lwd = 2)

Note 1.8. We observe that the expected number of iterations until the generation of X_{i} is equal to:

$$
M=\frac{1}{G(b)-G(a)}=\frac{1}{\mathbb{P}(a \leqslant X \leqslant b)}>1 .
$$

Therefore, the use of PDF g as a proposal is efficient when the probability $\mathbb{P}(a \leqslant X \leqslant b)$ is high. Otherwise, the use of the uniform distribution on $[a, b]$ as a proposal would be more efficient.

Example 1.14. We want to generate a random sample $\left(X_{1}, Y_{1}, Z_{1}\right), \ldots,\left(X_{n}, Y_{n}, Z_{n}\right)$ from the uniform distribution on the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leqslant 2 z, x \geqslant y \geqslant z\right\}$. We observe that:

$$
\begin{aligned}
& x^{2}+y^{2} \leqslant 2 z \leqslant 2 x \quad \Rightarrow \quad(x-1)^{2}+y^{2} \leqslant 1 \quad \Rightarrow \quad x \in[0,2], \quad y \in[-1,1], \\
& x^{2}+y^{2} \leqslant 2 z \leqslant 2 y \quad \Rightarrow \quad x^{2}+(y-1)^{2} \leqslant 1 \quad \Rightarrow \quad x \in[-1,1], \quad y \in[0,2], \\
& 0 \leqslant x^{2}+y^{2} \leqslant 2 z \quad \Rightarrow \quad z \geqslant 0 .
\end{aligned}
$$

Be intersecting all of the constraints, we infer that $S \subseteq[0,1]^{3}$. Let (X, Y, Z) be a random vector which follows the uniform distribution on the cube $[0,1]^{3}$ with PDF $g(x, y, z)=1$ for $x, y, z \in[0,1]$. We infer that the random variables X, Y, Z are independent and follow the Unif $[0,1]$ distribution. Therefore, it suffices to generate a random sample from the distribution of (X, Y, Z) given that $(X, Y, Z) \in S$.
library (plot3D)
$\mathrm{n}=10000$
X $=$ runif(n)
$Y=\operatorname{runif}(n)$
Z $=\operatorname{runif}(\mathrm{n})$
$\mathrm{I}=$ which $\left(\mathrm{X}>=\mathrm{Y}\right.$ \& $\left.\mathrm{Y}>=\mathrm{Z} \& \mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2<=2 * \mathrm{Z}\right)$
$\mathrm{J}=$ which $\left(\mathrm{X}<\mathrm{Y}|\mathrm{Y}<\mathrm{Z}| \mathrm{X}{ }^{\wedge} 2+\mathrm{Y}^{\wedge} 2>2\right.$ * Z$)$
scatter3D(X[J], Y[J], Z[J], phi = 0, theta = 45, col = "red", pch = 16, cex = 0.1)
scatter3D(X[I], Y[I], Z[I], phi = 0, theta $=45$, col = "blue", add $=$ TRUE, pch = 16,
cex $=0.2$)

library (plot3D)

$\mathrm{n}=10000$
$\mathrm{X}=$ numeric (n)
$\mathrm{Y}=$ numeric (n)
$\mathrm{Z}=$ numeric (n)
for (i in 1:n) \{
$X[i]=\operatorname{runif}(1)$
$\mathrm{Y}[\mathrm{i}]=\operatorname{runif}(1)$
$\mathrm{Z}[\mathrm{i}]=\operatorname{runif}(1)$
while (X[i] < Y[i] \| Y [i] < Z[i] || X[i]^2 + Y[i]^2 > 2 * Z[i]) \{ $X[i]=r u n i f(1)$ $\mathrm{Y}[\mathrm{i}]=\operatorname{runif}(1)$ $Z[i]=\operatorname{runif}(1)$
\}
\}
scatter3D(X, Y, Z, colvar $=N A$, phi $=0$, theta $=45, \mathrm{pch}=16, \mathrm{cex}=0.1$)

Example 1.15. We want to generate a random sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ following the PDF $f(x, y)=c x^{2} y^{3}$ for $(x, y) \in S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 1, x, y \geqslant 0\right\} \subseteq[0,1]^{2}$. Let $X \sim \operatorname{Beta}(3,1)$ and $Y \sim \operatorname{Beta}(4,1)$ be independent random variables with PDFs $f_{X}(x)=3 x^{2}$ and $f_{Y}(y)=4 y^{3}$ for $x, y \in[0,1]$. We observe that $g(x, y)=f_{X}(x) f_{Y}(y)=12 x^{2} y^{3}$. Therefore, it suffices to generate a random sample from the distribution of (X, Y) given that $(X, Y) \in S$. For $x, y, u, v \in[0,1]$, we calculate that $F_{X}(x)=x^{3}, F_{Y}(y)=y^{4}, F_{X}^{-1}(u)=u^{1 / 3}$ and $F_{Y}^{-1}(v)=v^{1 / 4}$.
$\mathrm{n}=10000$
$\mathrm{U}=\mathrm{runif}(\mathrm{n})$
$X=U^{\wedge}(1 / 3)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$\mathrm{Y}=\mathrm{V}^{\wedge}(1 / 4)$
$\mathrm{I}=$ which $\left(\mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2<=1\right)$
$\mathrm{J}=$ which $\left(\mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2>1\right)$
curve (sqrt (1 - x^2), xlim $=c(0,1), \operatorname{lwd}=2, x l a b=" X ", y l a b=" Y ")$
points(X[I], Y[I], col = "blue", pch = 16, cex = 0.1)
points(X[J], Y[J], col = "red", pch = 16, cex = 0.1)
legend("bottomleft", c(expression(y == sqrt(1 - x^2)), "Accepted", "Rejected"), col = c("black", "blue", "red"), lty $=c(1, N A, N A), l w d=c(2, N A, N A)$, $p c h=c(N A, 16,16))$

library (plot3D)
$\mathrm{n}=50000$
$\mathrm{X}=$ numeric (n)
Y = numeric (n)
for (i in 1:n) \{
$\mathrm{U}=$ runif(1)
$\mathrm{V}=\operatorname{runif}(1)$
$X[i]=U^{\wedge}(1 / 3)$
$\mathrm{Y}[\mathrm{i}]=\mathrm{V}^{\wedge}(1 / 4)$
while (X[i]^2 + Y[i]^2 > 1) \{
$\mathrm{U}=\operatorname{runif}(1)$
$\mathrm{V}=$ runif (1)
$\mathrm{X}[\mathrm{i}]=\mathrm{U}^{\wedge}(1 / 3)$
$\mathrm{Y}[\mathrm{i}]=\mathrm{V}^{\wedge}(1 / 4)$
\}

Box-Muller Transform

Let $X, Y \sim \mathcal{N}(0,1)$ be independent random variables. Then, we calculate that:

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

We consider the change to polar coordinates $D=X^{2}+Y^{2}, \Theta=\arctan \frac{Y}{X}$ or equivalently $X=\sqrt{D} \cos \Theta$, $Y=\sqrt{D} \sin \Theta$. For $d>0$ and $\theta \in[0,2 \pi]$, we calculate that:

$$
\begin{gathered}
J_{X, Y}(d, \theta)=\frac{\partial(x, y)}{\partial(d, \theta)}=\left[\begin{array}{cc}
\frac{\partial x}{\partial d} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial d} & \frac{\partial y}{\partial \theta}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\cos \theta}{2 \sqrt{d}} & -\sqrt{d} \sin \theta \\
\frac{\sin \theta}{2 \sqrt{d}} & \sqrt{d} \cos \theta
\end{array}\right] \\
\operatorname{det}\left[J_{X, Y}(d, \theta)\right]=\frac{1}{2} \cos ^{2} \theta+\frac{1}{2} \sin ^{2} \theta=\frac{1}{2} \\
f_{D, \Theta}(d, \theta)=\left|\operatorname{det}\left[J_{X, Y}(d, \theta)\right]\right| f_{X, Y}(\sqrt{d} \cos \theta, \sqrt{d} \sin \theta)=\frac{1}{2} \cdot \frac{1}{2 \pi} e^{-d / 2}=\frac{1}{2} e^{-d / 2} \cdot \frac{1}{2 \pi}
\end{gathered}
$$

Therefore, we conclude that the random variables D and Θ are independent with $D \sim \operatorname{Exp}(1 / 2) \equiv \chi_{2}^{2}$ and $\Theta \sim \operatorname{Unif}[0,2 \pi]$.

Note 1.9. If $Z \sim \mathcal{N}(0,1), \mu \in \mathbb{R}$ and $\sigma>0$, then $X=\sigma Z+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

```
Algorithm 1.3 Box-Muller Transform
    Input: Expected value \(\mu\), standard deviation \(\sigma\) and sample size \(n\).
```

For $i=1,2, \ldots, n / 2$, we iterate the following steps:
1: We generate $U \sim \operatorname{Unif}[0,1]$ and let $D=-2 \log U \sim \operatorname{Exp}(1 / 2)$.
2: We generate $V \sim \operatorname{Unif}[0,1]$ and let $\Theta=2 \pi V \sim \operatorname{Unif}[0,2 \pi]$.
3: We let $Z_{1}=\sqrt{D} \cos \Theta \sim \mathcal{N}(0,1)$ and $Z_{2}=\sqrt{D} \sin \Theta \sim \mathcal{N}(0,1)$.
4: We let $X_{2 i-1}=\sigma Z_{1}+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $X_{2 i}=\sigma Z_{2}+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$.
$\mathrm{n}=10000$
$\mathrm{mu}=1$
sigma $=2$
$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$
D $=-2 * \log (\mathrm{U})$
$\mathrm{V}=$ runif($\mathrm{n} / 2$)
Theta $=2 * \mathrm{pi} * \mathrm{~V}$
$Z=\operatorname{sqrt}(\mathrm{D}) * c(\cos ($ Theta), $\sin ($ Theta $))$
$\mathrm{X}=$ sigma $* \mathrm{Z}+\mathrm{mu}$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)

Discrete Random Variable Generation

Let X be a discrete random variable with support $S=\mathbb{N}$ and PMF $p_{j}=\mathbb{P}(X=j)$ for $j=0,1, \ldots$. For $x \in \mathbb{N}$, we calculate that:

$$
\begin{gathered}
F(x)=\mathbb{P}(X \leqslant x)=\sum_{j=0}^{x} p_{j} \\
F^{-}(u)=\inf \left\{x \in S: \sum_{j=0}^{x} p_{j} \geqslant u\right\}= \begin{cases}0, & 0 \leqslant u \leqslant p_{0} \\
1, & p_{0}<u \leqslant p_{0}+p_{1} \\
2, & p_{0}+p_{1}<u \leqslant p_{0}+p_{1}+p_{2} \\
\cdots\end{cases}
\end{gathered}
$$

Example 1.16. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PMF $p_{1}=0.2, p_{2}=0.15$, $p_{3}=0.25, p_{4}=0.4$. We calculate that:

$$
F^{-}(u)= \begin{cases}1, & 0 \leqslant u \leqslant 0.2 \\ 2, & 0.2<u \leqslant 0.35 \\ 3, & 0.35<u \leqslant 0.6 \\ 4, & 0.6<u \leqslant 1\end{cases}
$$

```
n = 10000
S = 1:4
pmf = c(0.2, 0.15, 0.25, 0.4)
X = numeric(n)
for (i in 1:n) {
    U = runif(1)
    j = 1
    cdf = pmf[1]
    while (U > cdf) {
        j = j + 1
        cdf = cdf + pmf[j]
    }
    X[i] = S[j]
}
table(factor(X, levels = S))/n
##
## 1rrrrr
## 0.2010 0.1511 0.2511 0.3968
```

Note 1.10. Since the algorithm goes through the support of the random variable X from start to finish and it's more likely for X to take values with higher probability, it's more computationally efficient to sort the PMF of the random variable in decreasing order and then simulate from it.

```
n = 10000
S = 1:4
pmf = c(0.2, 0.15, 0.25, 0.4)
I = order(pmf, decreasing = TRUE)
pmf = pmf[I]
S = I[S]
X = numeric(n)
for (i in 1:n) {
    U = runif(1)
    j = 1
    cdf = pmf[1]
    while (U > cdf) {
        j = j + 1
        cdf = cdf + pmf[j]
    }
    X[i] = S[j]
}
table(factor(X, levels = S))/n
##
## 4 3 1 
```

\#\# 0.40270 .24540 .19460 .1573
Example 1.17. We want to generate a finite path $X_{1}, X_{2}, \ldots, X_{n}$ from a discrete-time Markov chain with finite state-space $S=\{1,2, \ldots, m\}$, initial distribution $a=\left[a_{k}\right]$ and transition probability matrix $P=\left[p_{k, \ell}\right]$. We know that:

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) & =\mathbb{P}\left(X_{1}=x_{1}\right) \mathbb{P}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right) \\
& =a_{x_{1}} p_{x_{1}, x_{2}} \cdots p_{x_{n-1}, x_{n}} .
\end{aligned}
$$

Input: State-space S, initial distribution a, transition probability matrix P and path length n.
1: We generate X_{1} from the initial distribution a.
2: For $i=2,3, \ldots, n$, we iterate the following step:
i: We generate X_{i} following the PMF which is given by row X_{i-1} of the transition probability matrix P.
Output: Path $X_{1}, X_{2}, \ldots, X_{n}$.

```
n = 100
m}=
S = 1:m
a = c(0.2, 0.15, 0.25, 0.4)
P = rbind(c(0.1, 0.2, 0.3, 0.4), c(0.2, 0.5, 0.2, 0.1), c(0.2, 0.1, 0.6, 0.1),
    c(0.7, 0.1, 0.1, 0.1))
rownames(P) = S
colnames(P) = S
print(P)
## 
## 1 0.1 0.2 0.3 0.4
## 2 0.2 0.5 0.2 0.1
## 3 0.2 0.1 0.6 0.1
## 4 0.7 0.1 0.1 0.1
X = numeric(n)
U = runif(1)
j = 1
cdf = a[1]
while (U > cdf) {
    j = j + 1
    cdf = cdf + a[j]
}
X[1] = S[j]
for (i in 2:n) {
    pmf = P[X[i - 1], ]
    U = runif(1)
    j = 1
```

```
    cdf = pmf[1]
    while (U > cdf) {
        j = j + 1
        cdf = cdf + pmf[j]
    }
    X[i] = S[j]
}
plot(X, type = "b", pch = 16, lwd = 2)
```


Example 1.18. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$. For $j=0,1, \ldots$, we know that:

$$
p_{j}=e^{-\lambda} \frac{\lambda^{j}}{j!} .
$$

We observe that:

$$
p_{0}=e^{-\lambda}, \quad p_{j+1}=\frac{\lambda}{j+1} p_{j}
$$

$\mathrm{n}=10000$
lambda $=10$
X = numeric(n)
for (i in 1:n) \{
$\mathrm{U}=$ runif(1)
pmf $=\exp (-$ lambda $)$
cdf = pmf
while (U > cdf) \{
X[i] = X[i] + 1
pmf = pmf * lambda/X[i]
$c d f=c d f+p m f$
\}
\}

```
barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)
lines(0:max(X) + 0.5, dpois(0:max(X), lambda), col = "red", lwd = 2)
```


Let $\{N(t): t \geqslant 0\}$ be a Poisson process with rate λ and inter-arrival times $Y_{1}, Y_{2}, \cdots \sim \operatorname{Exp}(\lambda)$. We know that:

$$
N(1)=\sup \left\{k \in \mathbb{N}: \sum_{j=1}^{k} Y_{j} \leqslant 1\right\}=\inf \left\{k \in \mathbb{N}: \sum_{j=1}^{k+1} Y_{j}>1\right\} \sim \operatorname{Poisson}(\lambda) .
$$

Input: Rate λ and sample size n.
For $i=1,2, \ldots, n$, we iterate the following steps:
1: We let $S \leftarrow 0$ and $k \leftarrow 0$.
2: We generate $U \sim \operatorname{Unif}[0,1]$, let $Y=-\frac{1}{\lambda} \log U \sim \operatorname{Exp}(\lambda)$ and let $S \leftarrow S+Y$.
3: If $S>1$, then we let $X_{i}=k$. Otherwise, we let $k \leftarrow k+1$ and return to step 2.
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the $\operatorname{Poisson}(\lambda)$ distribution.

```
n = 10000
lambda = 10
X = numeric(n)
for (i in 1:n) {
    S = 0
    while (S <= 1) {
        U = runif(1)
        Y = -log(U)/lambda
        S = S + Y
        if (S <= 1) {
            X[i] = X[i] + 1
        }
    }
}
```

```
barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)
lines(0:max(X) + 0.5, dpois(0:max(X), lambda), col = "red", lwd = 2)
```


Example 1.19. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Unif}\{1,2, \ldots, k\}$. For $x \in S$, we calculate that:

$$
\begin{gathered}
F(x)=\mathbb{P}(X \leqslant x)=\frac{x}{k} \\
F^{-}(u)=\inf \left\{x \in S: u \leqslant \frac{x}{k}\right\}=\inf \{x \in S: x \geqslant k u\}=\lfloor k u\rfloor+1
\end{gathered}
$$

$\mathrm{n}=10000$
$\mathrm{k}=5$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{floor}(\mathrm{k} * \mathrm{U})+1$
table(factor $(X$, levels $=1: k)) / n$
\#\#
$\begin{array}{llllll}\text { \#\# } & 1 & 2 & 3 & 4 & 5\end{array}$
\#\# $0.2010 \quad 0.20170 .20050 .19030 .2065$
Example 1.20. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Unif}\{a, a+1, \ldots, b\}$. For $x \in S$, we calculate that:

$$
\begin{gathered}
F(x)=\mathbb{P}(X \leqslant x)=\frac{x-a+1}{b-a+1} \\
F^{-}(u)=\inf \left\{x \in S: u \leqslant \frac{x-a+1}{b-a+1}\right\}=\inf \{x \in S: x \geqslant(b-a+1) u+a-1\}=\lfloor(b-a+1) u\rfloor+a
\end{gathered}
$$

$\mathrm{n}=10000$
$\mathrm{a}=-1$
b $=3$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=f l o o r((b-a+1) * U)+a$
table(factor $\left.\left(X, l_{\text {evel }}=a: b\right)\right) / n$
\#\#
$\begin{array}{lllllll}\# \# & -1 & 0 & 1 & 2 & 3\end{array}$
\#\# $0.2010 \quad 0.20170 .20050 .19030 .2065$
Example 1.21. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Geom}(p)$ with PMF $p_{j}=p(1-p)^{j}$ for $j=0,1, \ldots$. For $x \in \mathbb{N}$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant x)=p \sum_{j=0}^{x}(1-p)^{j}=p \cdot \frac{1-(1-p)^{x+1}}{1-(1-p)}=1-(1-p)^{x+1}
$$

$$
\begin{aligned}
F^{-}(u) & =\min \left\{x \in \mathbb{N}: 1-(1-p)^{x+1} \geqslant u\right\}=\min \{x \in \mathbb{N}:(x+1) \log (1-p) \leqslant \log (1-u)\} \\
& =\min \left\{x \in \mathbb{N}: x \geqslant \frac{\log (1-u)}{\log (1-p)}-1\right\}=\left\lfloor\frac{\log (1-u)}{\log (1-p)}\right\rfloor
\end{aligned}
$$

$\mathrm{n}=10000$
$\mathrm{p}=0.4$
$\mathrm{U}=$ runif(n$)$
$X=f \operatorname{loor}(\log (U) / \log (1-p))$
barplot(table(factor(X, levels $=0: \max (X))) / n$, space $=0$)
lines ($0: \max (X)+0.5$, dgeom ($0: \max (X), \mathrm{p})$, col = "red", $1 w d=2$)

Example 1.22. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(p)$. We calculate that:

$$
F^{-}(u)=\left\{\begin{array}{ll}
0, & 0 \leqslant u \leqslant 1-p \\
1, & 1-p<u \leqslant 1
\end{array}=\left\{\begin{array}{ll}
1, & 0 \leqslant 1-u<p \\
0, & p \leqslant 1-u \leqslant 1
\end{array} .\right.\right.
$$

```
\(\mathrm{n}=10000\)
\(\mathrm{p}=0.4\)
\(\mathrm{U}=\) runif( n\()\)
X = as.numeric ( \(U\) < \(p\) )
table(factor (X, levels \(=0: 1)\) ) \(/ \mathrm{n}\)
\#\#
\#\# 0
```

\#\# 0.59730 .4027
Example 1.23. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{Bin}(k, p)$. For $j=0,1, \ldots, k$, we know that:

$$
p_{j}=\binom{k}{j} p^{j}(1-p)^{k-j}
$$

We observe that:

$$
p_{0}=(1-p)^{k}, \quad p_{j+1}=\frac{k-j}{j+1} \frac{p}{1-p} p_{j}
$$

```
n = 10000
k = 20
p = 0.4
X = numeric(n)
for (i in 1:n) {
    U = runif(1)
    pmf = (1 - p)^k
    cdf = pmf
    while (U > cdf) {
        pmf = pmf * (k - X[i])/(X[i] + 1) * p/(1 - p)
        cdf = cdf + pmf
        X[i] = X[i] + 1
    }
}
barplot(table(factor(X, levels = 0:k))/n, space = 0)
lines(0:k + 0.5, dbinom(0:k, k, p), col = "red", lwd = 2)
```


Let $Y_{1}, \ldots, Y_{k} \sim \operatorname{Bernoulli}(p)$ be independent random variables. Then, we know that $Y_{1}+\cdots+Y_{k} \sim \operatorname{Bin}(k, p)$.
$\mathrm{n}=10000$
$\mathrm{k}=20$
$\mathrm{p}=0.4$
$\mathrm{U}=\operatorname{matrix}($ runif $(\mathrm{n} * \mathrm{k}), \mathrm{n})$
$\mathrm{Y}=\mathrm{U}<\mathrm{p}$

X = rowSums (Y)
barplot(table(factor (X, levels $=0: k)) / n$, space $=0$)
lines ($0: \mathrm{k}+0.5$, dbinom ($0: \mathrm{k}, \mathrm{k}, \mathrm{p}$), col = "red", lwd = 2)

Example 1.24. We want to generate a random sample $X_{1}, \ldots, X_{n} \sim \operatorname{NegBin}(k, p)$ with the following PMF $p_{j}=\binom{j+k-1}{j} p^{k}(1-p)^{j}$ for $j=0,1, \ldots$ We observe that:

$$
p_{0}=p^{k}, \quad p_{j+1}=\frac{j+k}{j+1}(1-p) p_{j} .
$$

```
n = 10000
k = 20
p = 0.6
X = numeric(n)
for (i in 1:n) {
    U = runif(1)
    pmf = p^k
    cdf = pmf
    while (U > cdf) {
        pmf = pmf * (1 - p) * (X[i] + k)/(X[i] + 1)
        cdf = cdf + pmf
        X[i] = X[i] + 1
    }
}
barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)
lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
```


Let $Y_{1}, \ldots, Y_{k} \sim \operatorname{Geom}(p)$ be independent random variables. Then, we know that $Y_{1}+\cdots+Y_{k} \sim \operatorname{NegBin}(k, p)$.
$\mathrm{n}=10000$
$\mathrm{k}=20$
$\mathrm{p}=0.6$
$\mathrm{U}=\operatorname{matrix}(\operatorname{runif}(\mathrm{n} * \mathrm{k}), \mathrm{n})$
$Y=f \operatorname{loor}(\log (U) / \log (1-p))$
X = rowSums (Y)
barplot(table(factor (X, levels $=0: \max (X))) / n$, space $=0$)
lines ($0: \max (X)+0.5, \operatorname{dnbinom}(0: \max (X), k, p), c o l=" r e d ", 1 w d=2)$

We know that the negative binomial distribution represents the number of failures until the k-th success in independent Bernoulli trials with common success probability p.
$\mathrm{n}=10000$
$\mathrm{k}=20$
$\mathrm{p}=0.6$
X = numeric(n)
for (i in 1:n) \{
success $=0$

```
    while (success < k) {
    U = runif(1)
    Y = as.numeric(U < p)
    if (Y == 0) {
        X[i] = X[i] + 1
    } else {
        success = success + 1
        }
    }
}
barplot(table(factor(X, levels = 0:max(X)))/n, space = 0)
lines(0:max(X) + 0.5, dnbinom(0:max(X), k, p), col = "red", lwd = 2)
```


Example 1.25. We want to generate a random sample $X^{(1)}, \ldots, X^{(n)} \sim \operatorname{Multinomial}\left(m, p_{1}, \ldots, p_{k}\right)$. Let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be independent random variables with PMF $p=\left[p_{j}\right]$. Then, we know that:

$$
\left(\sum_{\ell=1}^{m} \mathbb{1}_{\left\{Y_{\ell}=1\right\}}, \ldots, \sum_{\ell=1}^{m} \mathbb{1}_{\left\{Y_{\ell}=k\right\}}\right) \sim \operatorname{Multinomial}\left(m, p_{1}, \ldots, p_{k}\right)
$$

$\mathrm{n}=10000$
$\mathrm{m}=50$
$p=c(0.3,0.1,0.4,0.2)$
$\mathrm{k}=$ length (p)
$\mathrm{X}=\operatorname{matrix}(0, \mathrm{n}, \mathrm{k})$
for (i in 1:n) \{
$\mathrm{Y}=$ numeric(m)
for (j in 1:m) \{
U = runif(1)
$1=1$
cdf = p[1]
while (U > cdf) \{

```
        l = l + 1
        cdf = cdf + p[l]
        }
        Y[j] = l
    }
    X[i, ] = table(factor(Y, levels = 1:k))
}
colMeans(X)
```

\#\# [1] $15.0163 \quad 4.9851 \quad 20.0457 \quad 9.9529$
Let $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right) \sim \operatorname{Multinomial}\left(m, p_{1}, \ldots, p_{k}\right)$. Then, we observe that:

$$
\begin{aligned}
\mathbb{P}(X=x) & =\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right) \\
& =\mathbb{P}\left(X_{1}=x_{1}\right) \mathbb{P}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{n}=x_{n} \mid X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}\right) .
\end{aligned}
$$

For $x_{1} \in\{0,1, \ldots, m\}$, we calculate according to the multinomial theorem that:

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}\right) & =\sum_{x_{2}+\cdots+x_{n}=m-x_{1}} \mathbb{P}(X=x)=\sum_{x_{2}+\cdots+x_{n}=m-x_{1}} \frac{m!}{x_{1}!x_{2}!\cdots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}} \\
& =\frac{m!}{x_{1}!\left(m-x_{1}\right)!} p_{1}^{x_{1}} \sum_{x_{2}+\cdots+x_{n}=m-x_{1}} \frac{\left(m-x_{1}\right)!}{x_{2}!\cdots x_{k}!} p_{2}^{x_{2} \cdots p_{k}^{x_{k}}=\binom{m}{x_{1}} p_{1}^{x_{1}}\left(p_{2}+\cdots+p_{k}\right)^{m-x_{1}}} \\
& =\binom{m}{x_{1}} p_{1}^{x_{1}}\left(1-p_{1}\right)^{m-x_{1}},
\end{aligned}
$$

i.e. $X_{1} \sim \operatorname{Bin}\left(m, p_{1}\right)$. For $x_{2} \in\left\{0,1, \ldots, m-x_{1}\right\}$, we calculate that:

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) & =\sum_{x_{3}+\cdots+x_{n}=m-x_{1}-x_{2}} \mathbb{P}(X=x)=\sum_{x_{3}+\cdots+x_{n}=m-x_{1}-x_{2}} \frac{m!}{x_{1}!x_{2}!\cdots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}} \\
= & \frac{m!}{x_{1}!x_{2}!\left(m-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}} \sum_{x_{3}+\cdots+x_{n}=m-x_{1}-x_{2}} \frac{\left(m-x_{1}-x_{2}\right)!}{x_{3}!\cdots x_{k}!} p_{3}^{x_{3}} \cdots p_{k}^{x_{k}} \\
= & \frac{m!}{x_{1}!x_{2}!\left(m-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}}\left(p_{3}+\cdots+p_{k}\right)^{m-x_{1}-x_{2}} \\
= & \frac{m!}{x_{1}!x_{2}!\left(m-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}}\left(1-p_{1}-p_{2}\right)^{m-x_{1}-x_{2}}, \\
\mathbb{P}\left(X_{2}=x_{2} \mid X_{1}=\right. & \left.x_{1}\right)=\frac{\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{\mathbb{P}\left(X_{1}=x_{1}\right)}=\frac{\frac{m!}{x_{1}!x_{2}!\left(m-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}}\left(1-p_{1}-p_{2}\right)^{m-x_{1}-x_{2}}}{m!} p_{1}^{x_{1}}\left(1-p_{1}\right)^{m-x_{1}} \\
& =\binom{m-x_{1}}{x_{2}}\left(\frac{p_{2}}{1-p_{1}}\right)^{x_{2}}\left(1-\frac{p_{2}}{1-p_{1}}\right)^{m-x_{1}-x_{2}}
\end{aligned}
$$

i.e. $\left(X_{2} \mid X_{1}=x_{1}\right) \sim \operatorname{Bin}\left(m-x_{1}, \frac{p_{2}}{1-p_{1}}\right)$. For $\ell=2,3, \ldots, k-2$, we calculate that:

$$
\left(X_{\ell+1} \mid X_{1}=x_{1}, \ldots, X_{\ell}=x_{\ell}\right) \sim \operatorname{Bin}\left(m-x_{1}-\cdots-x_{\ell}, \frac{p_{\ell+1}}{1-p_{1}-\cdots-p_{\ell}}\right) .
$$

Finally, we observe that:

$$
\mathbb{P}\left(X_{k}=x_{k} \mid X_{1}=x_{1}, \ldots, X_{k-1}=x_{k-1}\right)=\left\{\begin{array}{ll}
1, & x_{k}=m-x_{1}-\cdots-x_{k-1} \\
0, & x_{k} \neq m-x_{1}-\cdots-x_{k-1}
\end{array} .\right.
$$

$\mathrm{n}=10000$
$\mathrm{m}=50$
$\mathrm{p}=\mathrm{c}(0.3,0.1,0.4,0.2)$
$\mathrm{k}=$ length (p)
X = matrix (0, n, k)
for (i in 1:n) \{
trials = m
prob = 1
for (l in 1: (k - 1)) \{
$\mathrm{U}=$ runif(trials)
$X[i, l]=\operatorname{sum}(U<p[l] / p r o b)$
trials = trials $-\mathrm{X}[i, \operatorname{l}]$
prob = prob - p[l]
\}
X[i, k] = trials
\}
colMeans (X)
\#\# [1] $15.0006 \quad 4.9823 \quad 20.0646 \quad 9.9525$
Note 1.11. The first simulation method is more efficient when $m \ll k$, whereas the second simulation method is more efficient when $k \ll m$.

Example 1.26. We want to generate a random sample $X^{(1)}, \ldots, X^{(n)} \sim \operatorname{Hypergeom}\left(m, r_{1}, \ldots, r_{k}\right)$ with PMF:

$$
\mathbb{P}(X=x)=\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)=\frac{\binom{r_{1}}{x_{1}}\binom{r_{2}}{x_{2}} \cdots\binom{r_{k}}{x_{k}}}{\binom{r_{1}+r_{2}+\cdots+r_{k}}{m}}
$$

```
n = 10000
m = 50
r = c(30, 10, 40, 20)
k = length(r)
X = matrix(0, n, k)
for (i in 1:n) {
    count = r
    total = sum(r)
    for (j in 1:m) {
        pmf = count/total
        U = runif(1)
        l = 1
```

```
        cdf = pmf[1]
        while (U > cdf) {
            l = l + 1
            cdf = cdf + pmf[l]
        }
        X[i, l] = X[i, l] + 1
        count[l] = count[l] - 1
        total = total - 1
    }
}
colMeans(X)
## [1] 15.0137 4.9887 20.0386 9.9590
```


Composition Method

Let X be a random variable with $\operatorname{CDF} F_{X}(x)$ and absolutely continuous random variable Y with $\operatorname{PDF} f_{Y}(y)$. We know that:

$$
F_{X}(x)=\mathbb{P}(X \leqslant x)=\int_{\mathbb{R}} \mathbb{P}(X \leqslant x \mid Y=y) f_{Y}(y) d y=\int_{\mathbb{R}} F_{X \mid Y}(x \mid y) f_{Y}(y) d y
$$

Example 1.27. For $x \in[0,1]$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the CDF:

$$
F(x)=\int_{0}^{\infty} x^{y} e^{-y} d y
$$

Consider the PDF $g(y)=e^{-y}$ for $y>0$, i.e. consider the random variable $Y \sim \operatorname{Exp}(1)$. For $x \in[0,1]$, we calculate that:

$$
F(x)=\mathbb{P}(X \leqslant x)=\int_{0}^{\infty} \mathbb{P}(X \leqslant x \mid Y=y) g(y) d y
$$

which implies that $F_{X \mid Y}(x \mid y)=\mathbb{P}(X \leqslant x \mid Y=y)=x^{y}$ and $F_{X \mid Y}^{-1}(u \mid y)=u^{1 / y}$.
Input: CDFs $F_{Y}, F_{X \mid Y}$ and sample size n.
For $i=1,2, \ldots, n$, we iterate the following steps:
1: We generate $U \sim \operatorname{Unif}[0,1]$ and let $Y=F_{Y}^{-1}(U)$.
2: We generate $V \sim \operatorname{Unif}[0,1]$ and let $X_{i}=F_{X \mid Y}^{-}(V \mid Y)$.
Output: Random sample $X_{1}, X_{2}, \ldots, X_{n}$ following the CDF F_{X}.

```
n = 10000
U = runif(n)
Y = -log(U)
V = runif(n)
X = V^(1/Y)
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(1/(x * (1 - log(x))^2), add = TRUE, col = "red", lwd = 2)
```


For $x \in[0,1]$, we can directly calculate that:

$$
F(x)=\int_{0}^{\infty}\left(\frac{e}{x}\right)^{-y} d y=\left[-\frac{1}{\log \frac{e}{x}}\left(\frac{e}{x}\right)^{-y}\right]_{y=0}^{\infty}=\frac{1}{1-\log x}, \quad F^{-1}(u)=e^{1-1 / u}, \quad f(x)=\frac{1}{x(1-\log x)^{2}}
$$

$\mathrm{n}=10000$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=\exp (1-1 / U)$
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(1/(x * (1 - log(x))^2), add = TRUE, col = "red", lwd = 2)

Example 1.28. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n} \sim t_{\nu}$. Consider independent random variables $Z \sim \mathcal{N}(0,1)$ and $Y \sim \chi^{2}(\nu) \equiv \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{1}{2}\right)$. Then, we know that:

$$
X=\frac{Z}{\sqrt{Y / \nu}} \sim t_{\nu}
$$

We observe that:

$$
(X \mid Y=y)=\frac{Z}{\sqrt{y / \nu}} \sim \mathcal{N}\left(0, \frac{\nu}{y}\right)
$$

```
n = 10000
nu = 10
M = (nu/2)^(nu/2)/gamma(nu/2) * exp(-(nu - 2)/2)
Y = numeric(n)
for (i in 1:n) {
    W = runif(1)
    Y[i] = -nu * log(W)
    U = runif(1)
    V = M * dexp(Y[i], 1/nu) * U
    while (dchisq(Y[i], nu) < V) {
        W = runif(1)
        Y[i] = -nu * log(W)
        U = runif(1)
        V = M * dexp(Y[i], 1/nu) * U
    }
}
U = runif(n/2)
D = -2 * log(U)
V = runif(n/2)
Theta = 2 * pi * V
Z = sqrt(D) * c(cos(Theta), sin(Theta))
X = sqrt(nu/Y) * Z
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dt(x, nu), add = TRUE, col = "red", lwd = 2)
```


Example 1.29. Let $\{N(t): t \geqslant 0\}$ be a Poisson process with rate 1 which counts the number of coin tosses up to time t. For $p \in[0,1]$, the coin comes up " H " with probability p and " T " with probability $1-p$. Consider the Poisson processes $\left\{N_{H}(t): t \geqslant 0\right\}$ with rate p and $\left\{N_{T}(t): t \geqslant 0\right\}$ with rate $1-p$, which count the number of "H" and "T" respectively up to time t. We know that the processes $\left\{N_{H}(t): t \geqslant 0\right\}$ and $\left\{N_{T}(t): t \geqslant 0\right\}$ are independent and constitute a thinning of the process $\{N(t): t \geqslant 0\}$. We know that the event count in the process $\left\{N_{T}(t): t \geqslant 0\right\}$ up to the k-th event in the process $\left\{N_{H}(t): t \geqslant 0\right\}$ follows the $\operatorname{NegBin}(k, p)$ distribution. However,
the event count $N_{T}(t)$ up to time t follows the Poisson $((1-p) t)$ distribution and the time S_{k} up to the k-th " H " follows the Gamma (k, p) distribution. For $j=0,1, \ldots$, we verify that:

$$
\begin{aligned}
\mathbb{P}\left(N_{T}\left(S_{k}\right)=j\right) & =\int_{0}^{\infty} \mathbb{P}\left(N_{T}\left(S_{k}\right)=j \mid S_{k}=y\right) f_{S_{k}}(y) d y=\int_{0}^{\infty} \mathbb{P}\left(N_{T}(y)=j \mid S_{k}=y\right) f_{S_{k}}(y) d y \\
& =\int_{0}^{\infty} \mathbb{P}\left(N_{T}(y)=j\right) f_{S_{k}}(y) d y=\int_{0}^{\infty} e^{-(1-p) y} \frac{[(1-p) y]^{j}}{j!} \frac{p^{k}}{(k-1)!} y^{k-1} e^{-p y} d y \\
& =\frac{1}{j!(k-1)!} p^{k}(1-p)^{j} \int_{0}^{\infty} y^{j+k-1} e^{-y} d y=\frac{1}{j!(k-1)!} p^{k}(1-p)^{j} \cdot \frac{(j+k-1)!}{1^{j+k}} \\
& =\binom{j+k-1}{j} p^{k}(1-p)^{j} .
\end{aligned}
$$

$\mathrm{n}=10000$
$\mathrm{k}=20$
$\mathrm{p}=0.6$
$\mathrm{U}=\operatorname{matrix}($ runif $(\mathrm{n} * \mathrm{k}), \mathrm{n})$
$R=-\log (U) / p$
$\mathrm{Y}=\operatorname{rowSums}(\mathrm{R})$
$\mathrm{X}=$ numeric (n)
for (i in 1:n) \{
$\mathrm{S}=0$
while (S <= Y[i]) \{
$\mathrm{U}=\mathrm{runif}(1)$
$R=-\log (U) /(1-p)$
$S=S+R$
if (S <= Y[i]) \{ $\mathrm{X}[\mathrm{i}]=\mathrm{X}[\mathrm{i}]+1$
\}
\}
\}
barplot (table(factor (X, levels $=0: \max (X))) / n$, space $=0$)
lines ($0: \max (\mathrm{X})+0.5$, dnbinom $(0: \max (\mathrm{X}), \mathrm{k}, \mathrm{p})$, col = "red", lwd = 2)

Let X be a random variable with $\operatorname{CDF} F_{X}(x)$ and discrete random variable Y with PMF $w=\left[w_{j}\right]$. Additionally, we define the conditional CDFs $F_{j}(x)=F_{X \mid Y}(x \mid j)$ for $j=0,1, \ldots$. We know that:

$$
F_{X}(x)=\mathbb{P}(X \leqslant x)=\sum_{j=0}^{\infty} \mathbb{P}(Y=j) \mathbb{P}(X \leqslant x \mid Y=j)=\sum_{j=0}^{\infty} w_{j} F_{X \mid Y}(x \mid j)=\sum_{j=0}^{\infty} w_{j} F_{j}(x)
$$

The CDF F_{X} is called a mixture distribution.
Note 1.12. i. If F_{0}, F_{1}, \ldots are absolutely continuous CDFs with corresponding PDFs f_{0}, f_{1}, \ldots, then F is an absolutely continuous CDF with corresponding PDF:

$$
f(x)=\sum_{j=0}^{\infty} w_{j} f_{j}(x)
$$

ii. If the CDFs F_{0}, F_{1}, \ldots are step functions with corresponding PMFs $p^{(0)}, p^{(1)}, \ldots$, then the CDF F is a step function with corresponding PMF:

$$
p_{\ell}=\sum_{j=0}^{\infty} w_{j} p_{\ell}^{(j)}
$$

Example 1.30. For $x \in[0,1]$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with CDF:

$$
F(x)=\sum_{j=1}^{k} w_{j} x^{j}
$$

where $w=\left[w_{j}\right]$ is a PMF. We observe that the $\operatorname{CDFs} F_{j}(x)=x^{j}$ correspond to the $\operatorname{Beta}(j, 1)$ distributions and calculate that $F_{j}^{-1}(u)=u^{1 / j}$.
$\mathrm{n}=10000$
$S=1: 4$
$\mathrm{w}=\mathrm{c}(0.4,0.3,0.2,0.1)$
$\mathrm{Y}=$ numeric (n)
for (i in 1:n) \{
$\mathrm{U}=\mathrm{runif}(1)$
$j=1$
cdf $=\mathrm{w}[1]$
while (U > cdf) \{ $j=j+1$ $c d f=c d f+w[j]$
\}
$Y[i]=S[j]$
\}
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{U}^{\wedge}(1 / \mathrm{Y})$
hist $(X, \quad$ FD", freq $=$ FALSE, main $=N A, X \lim =c(0,1), x l a b=N A)$
curve (w[1] * dbeta (x, 1, 1) $+\mathrm{w}[2] * \operatorname{dbeta}(\mathrm{x}, 2,1)+\mathrm{w}[3] * \operatorname{dbeta}(\mathrm{x}, 3,1)+$
$\mathrm{w}[4] * \operatorname{dbeta}(\mathrm{x}, 4,1), \mathrm{add}=\mathrm{TRUE}, \mathrm{col}=$ "red", lwd = 2)

Example 1.31. For $j=0,1, \ldots$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with PMF:

$$
p_{j}=\frac{1}{2^{j+2}}+\frac{1}{3^{j+1}}
$$

We observe that:

$$
p_{j}=\underbrace{\frac{1}{2}}_{w_{1}} \cdot \underbrace{\left(\frac{1}{2}\right)^{j} \frac{1}{2}}_{p_{j}^{(1)}}+\underbrace{\frac{1}{2}}_{w_{2}} \cdot \underbrace{\left(\frac{1}{3}\right)^{j} \frac{2}{3}}_{p_{j}^{(2)}} .
$$

Additionally, we observe that the PMF $p^{(1)}$ corresponds to the geometric distribution with success probability $\frac{1}{2}$, whereas the PMF $p^{(2)}$ corresponds to the geometric distribution with success probability $\frac{2}{3}$.
$\mathrm{n}=10000$
$\mathrm{w}=\mathrm{c}(0.5,0.5)$
$p=c(0.5,2 / 3)$
$\mathrm{U}=$ runif(n$)$
$\mathrm{Y}=$ ifelse($\mathrm{U}<\mathrm{w}[1], 1,2)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$X=f l o o r(\log (V) / \log (1-p[Y]))$
barplot (table(factor (X, levels $=0: \max (X))) / n$, space $=0$)
lines (0:max (X) + 0.5, w[1] * dgeom(0:max (X), p[1]) + w[2] * dgeom(0:max(X), p[2]), col = "red", lwd = 2)

Lemma 1.5. If $X \sim \operatorname{Exp}(\lambda)$ and $\mu \in \mathbb{R}$, then the random variable $W_{1}=\mu-X$ follows the $\operatorname{PDF} f_{W_{1}}(x)=\lambda e^{-\lambda(\mu-x)}$ for $x<\mu$.

Proof. For $x<\mu$, we calculate that:

$$
F_{W_{1}}(x)=\mathbb{P}\left(W_{1} \leqslant x\right)=\mathbb{P}(X \geqslant \mu-x)=e^{-\lambda(\mu-x)}, \quad f_{W_{1}}(x)=\frac{\partial F_{W_{1}}(x)}{\partial x}=\lambda e^{-\lambda(\mu-x)} .
$$

Note 1.13. We have shown that the random variable $W_{2}=\mu+X$ follows the PDF $f_{W_{2}}(x)=\lambda e^{-\lambda(x-\mu)}$ for $x \geqslant \mu$.
Example 1.32. For $x \in \mathbb{R}$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with PDF:

$$
f(x)=\frac{\lambda}{2} e^{-\lambda|x-\mu|} .
$$

We observe that:

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{2} \lambda e^{-\lambda(\mu-x)}, & x<\mu \\
\frac{1}{2} \lambda e^{-\lambda(x-\mu)}, & x \geqslant \mu
\end{array} .\right.
$$

Therefore, we infer that:

$$
f(x)=\frac{1}{2} f_{W_{1}}(x)+\frac{1}{2} f_{W_{2}}(x) .
$$

$\mathrm{n}=10000$
lambda $=2$
$\mathrm{mu}=1$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$Y=i f e l s e(U<0.5,1,2)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
X = ifelse(Y == 1, mu + log(V)/lambda, mu - log(V)/lambda)
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dexp(abs(x - mu), lambda)/2, add = TRUE, col = "red", lwd = 2)

Example 1.33. We want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with CDF:

$$
F(x)=\left\{\begin{array}{ll}
\frac{1-e^{-2 x}+2 x}{3}, & 0 \leqslant x \leqslant 1 \\
\frac{3-e^{-2 x}}{3}, & x>1
\end{array} .\right.
$$

For $x \geqslant 0$, we define the following CDFs:

$$
F_{1}(x)=1-e^{-2 x}, \quad F_{2}(x)=\left\{\begin{array}{ll}
x, & 0 \leqslant x \leqslant 1 \\
1, & x>1
\end{array} .\right.
$$

We observe that:

$$
F(x)=\frac{1}{3} F_{1}(x)+\frac{2}{3} F_{2}(x) .
$$

Additionally, we observe that F_{1} is the CDF of the exponential distribution with parameter 2 , whereas F_{2} is the CDF of the uniform distribution on $[0,1]$.
$\mathrm{n}=10000$
$\mathrm{w}=\mathrm{c}(1 / 3,2 / 3)$
lambda $=2$
U = runif(n)
$\mathrm{Y}=$ ifelse(U < w[1], 1, 2)
$\mathrm{V}=$ runif(n$)$
X = ifelse(Y == 1, $-\log (V) / l a m b d a, ~ V)$
hist $(X$, "FD", freq $=$ FALSE, main $=N A, x l a b=N A)$
curve(w[1] * dexp(x, lambda) + w[2] * dunif(x), add = TRUE, col = "red", lwd = 2)

Example 1.34. For $x \geqslant 0$, we want to generate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with CDF:

$$
F(x)=\frac{2-e^{-9 x}}{2} .
$$

We define the CDFs $F_{1}(x)=1-e^{-9 x}$ and $F_{2}(x)=1$. We observe that:

$$
F(x)=\frac{1}{2} F_{1}(x)+\frac{1}{2} F_{2}(x) .
$$

Additionally, we observe that F_{1} is the CDF of the exponential distribution with parameter 9 , whereas F_{2} is the CDF of the degenerate random variable $Y=0$.
n $=10000$
$\mathrm{w}=\mathrm{c}(0.5,0.5)$
lambda = 9
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{Y}=\mathrm{ifelse}(\mathrm{U}$ < w[1], 1, 2)
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=$ ifelse($\mathrm{Y}==1,-\log (\mathrm{V}) / \mathrm{lambda}, 0)$
hist (X[Y == 1], "FD", freq = FALSE, main = NA, xlab = NA)
curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)

We observe that $F(0)=0.5$. For $u \in[0,0.5]$, it follows $F^{-}(u)=0$. For $u \in(0.5,1]$, we calculate that:

$$
F(x)=u \Leftrightarrow x=-\frac{1}{9} \log [2(1-u)] .
$$

Therefore, we infer that:

$$
F^{-}(u)=\left\{\begin{array}{cl}
0, & 0 \leqslant u \leqslant 0.5 \\
-\frac{1}{9} \log [2(1-u)], & 0.5<u \leqslant 1
\end{array}\right.
$$

$\mathrm{n}=10000$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\mathrm{ifelse}(\mathrm{U}<=0.5,0,-\log (2 *(1-\mathrm{U})) / \mathrm{lambda})$
hist (X[U > 0.5], "FD", freq = FALSE, main $=N A, x l a b=N A)$
curve(dexp(x, lambda), add = TRUE, col = "red", lwd = 2)

2 Monte Carlo Method

We want to approximate the following integral:

$$
I=\int_{0}^{1} g(x) d x
$$

We know that the random variable $U \sim \operatorname{Unif}[0,1]$ follows the PDF $f(x)=1$ for $x \in[0,1]$. Hence, we observe that:

$$
I=\int_{0}^{1} g(x) f(x) d x=\mathbb{E}[g(U)]
$$

Let $U_{1}, U_{2}, \ldots, U_{n}$ be a random sample from the Unif $[0,1]$ distribution. According to the strong law of large numbers, we know that:

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(U_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}[g(U)]=I .
$$

Example 2.1. We want to approximate the following integral:

$$
I=\int_{0}^{1} e^{e^{x}} d x
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$I=\operatorname{mean}(\exp (\exp (U)))$
print(I)
\#\# [1] 6.318484
Example 2.2. We want to approximate the following integral:

$$
I=\int_{0}^{1} \int_{0}^{1} e^{(x+y)^{2}} d x d y
$$

Consider the independent random variables $U, V \sim \operatorname{Unif}[0,1]$ with $\operatorname{PDF} f_{U, V}(u, v)=f_{U}(u) f_{V}(v)=1$ for $u, v \in[0,1]$. Then, we observe that $I=\mathbb{E}\left[e^{(U+V)^{2}}\right]$.
$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=$ runif(n)
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$I=\operatorname{mean}\left(\exp \left((U+V)^{\wedge} 2\right)\right)$
print(I)
\#\# [1] 4.886297
More generally, we want to approximate the following interval:

$$
I=\int_{S} g(x) d x
$$

Consider the random variable X with PDF $f(x)$ and support S. If we let $h(x)=\frac{g(x)}{f(x)}$, then we observe that:

$$
I=\int_{S} \frac{g(x)}{f(x)} \cdot f(x) d x=\mathbb{E}[h(X)]
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample following the PDF $f(x)$. According to the strong law of large numbers, we know that:

$$
\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}[h(X)]=I .
$$

Example 2.3. We want to approximate the following integral:

$$
I=\int_{-2}^{2} e^{x+x^{2}} d x
$$

Consider the random variable $X \sim \operatorname{Unif}[-2,2]$ with $\operatorname{PDF} f(x)=\frac{1}{4}$ for $x \in[-2,2]$. Then, we observe that:

$$
I=\int_{-2}^{2} 4 e^{x+x^{2}} \frac{1}{4} d x=\mathbb{E}\left(4 e^{X+X^{2}}\right)
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=4 * \mathrm{U}-2$
$I=\operatorname{mean}\left(4 * \exp \left(X+X^{\wedge} 2\right)\right)$
print(I)
\#\# [1] 93.76997
Example 2.4. We want to approximate the following integral:

$$
I=\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} d x
$$

Consider the random variable $X \sim \operatorname{Exp}(1)$ with PDF $f(x)=e^{-x}$ for $x>0$. Then, we observe that:

$$
I=\int_{0}^{\infty} \frac{x e^{x}}{\left(1+x^{2}\right)^{2}} e^{-x} d x=\mathbb{E}\left[\frac{X e^{X}}{\left(1+X^{2}\right)^{2}}\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=-\log (U)$
$I=\operatorname{mean}\left(X * \exp (X) /\left(1+X^{\wedge} 2\right)^{\wedge} 2\right)$
print(I)
\#\# [1] 0.4993482
Example 2.5. We want to approximate the following integral:

$$
I=\int_{-\infty}^{\infty} x^{4} e^{-x^{2}} d x
$$

Consider the random variable $X \sim \mathcal{N}(0,0.5)$ with $\operatorname{PDF} f(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$ for $x \in \mathbb{R}$. Then, we observe that:

$$
I=\int_{-\infty}^{\infty} \sqrt{\pi} x^{4} \frac{1}{\sqrt{\pi}} e^{-x^{2}} d x=\mathbb{E}\left(\sqrt{\pi} X^{4}\right)
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$
$D=-2 * \log (U)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n} / 2)$
Theta $=2 *$ pi $* V$
$Z=\operatorname{sqrt}(D) * c(\cos ($ Theta), $\sin ($ Theta) $)$
X = Z/sqrt(2)
$\mathrm{I}=\operatorname{mean}\left(\mathrm{sqrt}(\mathrm{pi}) * \mathrm{X}^{\wedge} 4\right)$
print(I)
\#\# [1] 1.328683
Example 2.6. We want to approximate the following integral:

$$
I=\int_{2}^{\infty} e^{-x^{2} / 2} \sin (2 \pi x) d x
$$

Consider the random variable X with PDF $f(x)=4 e^{-4(x-2)}$ for $x>2$. Then, we observe that:

$$
I=\int_{2}^{\infty} \frac{1}{4} e^{-x^{2} / 2+4 x-8} \sin (2 \pi x) \cdot 4 e^{-4(x-2)} d x=\mathbb{E}\left[\frac{1}{4} e^{-(X-4)^{2} / 2} \sin (2 \pi X)\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=2-\log (U) / 4$
$\mathrm{I}=\operatorname{mean}\left(\exp \left(-(\mathrm{X}-4)^{\wedge} 2 / 2\right) * \sin (2 * \mathrm{pi} * \mathrm{X}) / 4\right)$
print(I)
\#\# [1] 0.01963348
Example 2.7. We want to approximate the following integral:

$$
I=\int_{0}^{\infty} \int_{0}^{x} e^{-(x+y)} d y d x
$$

Consider the random variables X, Y with $X \sim \operatorname{Exp}(1)$ and $(Y \mid X=x) \sim \operatorname{Unif}[0, x]$. For $x>0$ and $y \in[0, x]$, we observe that:

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=e^{-x} \frac{1}{x}
$$

Therefore, we calculate that

$$
I=\int_{0}^{\infty} \int_{0}^{x} x e^{-y} \frac{e^{-x}}{x} d y d x=\mathbb{E}\left(X e^{-Y}\right)
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$

```
X = -log(U)
V = runif(n)
Y = X * V
I = mean(X * exp(-Y))
print(I)
## [1] 0.4984331
```

Note 2.1. We know that $\mathbb{P}(A)=\mathbb{E}\left(\mathbb{1}_{A}\right)$.
Example 2.8. We want to approximate the value of the constant π. Consider the independent random variables $U, V \sim \operatorname{Unif}[0,1]$. Then, we calculate that:

$$
\begin{aligned}
\mathbb{P}\left(U^{2}+V^{2} \leqslant 1\right) & =\mathbb{P}\left(U \leqslant \sqrt{1-V^{2}}\right)=\int_{0}^{1} \int_{0}^{\sqrt{1-v^{2}}} 1 d u d v \\
& =\int_{0}^{1} \sqrt{1-v^{2}} d v \stackrel{v=\sin x}{=} \int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} x} \cos x d x=\int_{0}^{\pi / 2} \cos ^{2} x d x \\
& =\int_{0}^{\pi / 2} \frac{1+\cos (2 x)}{2} d x=\left[\frac{x}{2}+\frac{\sin (2 x)}{4}\right]_{x=0}^{\pi / 2}=\frac{\pi}{4}
\end{aligned}
$$

Therefore, we observe that:

$$
\pi=4 \mathbb{P}\left(U^{2}+V^{2} \leqslant 1\right)=\mathbb{E}\left(4 \cdot \mathbb{1}_{\left\{U^{2}+V^{2} \leqslant 1\right\}}\right)
$$

$\mathrm{n}=1 \mathrm{e}+06$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=$ runif(n$)$
mean (4 * ($\left.\mathrm{U}^{\wedge} 2+\mathrm{V}^{\wedge} 2<=1\right)$)
\#\# [1] 3.141728
Example 2.9. Let $X_{1}, \ldots, X_{k} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a random sample. We define:

$$
\bar{X}=\frac{1}{k} \sum_{j=1}^{k} X_{j}, \quad S^{2}=\frac{1}{k-1} \sum_{j=1}^{k}\left(X_{j}-\bar{X}\right)^{2}
$$

We know that the $100(1-\alpha) \%$ equal-tailed confidence interval for the parameter μ is equal to:

$$
I(X)=\left[\bar{X}-t_{k-1 ; \alpha / 2} \frac{S}{\sqrt{k}}, \bar{X}+t_{k-1 ; \alpha / 2} \frac{S}{\sqrt{k}}\right] .
$$

Additionally, we know by construction that $\mathbb{P}[\mu \in I(X)]=1-\alpha$. We want to verify that the interval $I(X)$ has coverage $100(1-\alpha) \%$ for the parameter μ. We consider the random samples $X^{(1)}, \ldots, X^{(n)}$ following the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution and construct the corresponding confidence intervals $I^{(1)}, \ldots, I^{(n)}$. According to the strong law of large numbers, it must hold that:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{\mu \in I^{(i)}\right\}} \xrightarrow{\text { a.s }} \mathbb{E}\left[\mathbb{1}_{\{\mu \in I(X)\}}\right]=\mathbb{P}[\mu \in I(X)]=1-\alpha .
$$

```
n = 10000
k = 10
mu = 1
sigma = 2
alpha = 0.05
U = matrix(runif(k * n/2), n/2)
D = -2 * log(U)
V = matrix(runif(k * n/2), n/2)
Theta = 2 * pi * V
Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
X = sigma * Z + mu
Xbar = rowMeans(X)
S = apply(X, 1, sd)
I = cbind(Xbar - qt(alpha/2, k - 1, lower.tail = FALSE) * S/sqrt(k), Xbar +
    qt(alpha/2, k - 1, lower.tail = FALSE) * S/sqrt(k))
100 * mean(I[, 1] <= mu & mu <= I[, 2])
## [1] 94.78
```

Example 2.10. Let $X_{1}, \ldots, X_{k} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a random sample. We know that the statistic of the one-sided test of the hypotheses $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu<\mu_{0}$ is equal to:

$$
T(X)=\frac{\bar{X}-\mu_{0}}{S / \sqrt{k}}
$$

Additionally, we know that $T(X) \sim t_{k-1}$ under the null hypothesis H_{0}. We define the p-value $p(X)=F_{t_{k-1}}(T(X))$. We reject H_{0} at statistical significance level α if $T(X)<-t_{k-1 ; \alpha}$ or $p(X)<\alpha$. The type I error probability is equal to $\mathbb{P}_{\mu_{0}}\left[T(X)<-t_{k-1 ; \alpha}\right]=\alpha$ and the power is equal to $\beta(\mu)=\mathbb{P}_{\mu}\left[T(X)<-t_{k-1 ; \alpha}\right]$. We want to study the distribution of the statistic $T(X)$ and the p-value $p(X)$ under the hypotheses H_{0} and H_{1}. We consider the random samples $X^{(1)}, \ldots, X^{(n)}$ following the distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and conduct the corresponding hypothesis tests. Furthermore, we want to verify that the test has type I error probability equal to α independent of n, k, μ and σ. Finally, we want to study the change in power of the test for different values of k, μ, σ and α.

Proposition 2.1. If the random variable X has absolutely continuous CDF F, then it holds that:

$$
U=F(X) \sim \operatorname{Unif}[0,1] .
$$

Proof. We calculate that:

$$
F_{U}(u)=\mathbb{P}[F(X) \leqslant u]=\mathbb{P}\left[X \leqslant F^{-1}(u)\right]=F\left(F^{-1}(u)\right)=u
$$

Corollary 2.1. It holds that $p(X) \sim \operatorname{Unif}[0,1]$ under the null hypothesis H_{0}.

Proof. The statistic $T(X)$ follows the t_{k-1} distribution under H_{0}. Therefore, we infer that:

$$
p(X)=F_{t_{k-1}}(T(X)) \sim \operatorname{Unif}[0,1]
$$

```
n = 10000
k = 10
mu = 1
sigma = 2
muO = 1
alpha = 0.05
U = matrix(runif(k * n/2), n/2)
D = -2 * log(U)
V = matrix(runif(k * n/2), n/2)
Theta = 2 * pi * V
Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
X = sigma * Z + mu
Xbar = rowMeans(X)
S = apply(X, 1, sd)
t = (Xbar - mu0) * sqrt(k)/S
hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~
    under ~ H[0]))
curve(dt(x, k - 1), add = TRUE, col = "red", lwd = 2)
```


Test Statistic under H_{0}
$\mathrm{p}=\mathrm{pt}(\mathrm{t}, \mathrm{k}-1)$
hist (p, FFD ", freq $=$ FALSE, main $=\mathrm{NA}, \mathrm{xlim}=\mathrm{c}(0,1)$, $\mathrm{xlab}=\operatorname{expression(P-}$
Value ~ under ~ H[0]))
curve(dunif(x), add = TRUE, col = "red", lwd = 2)


```
mean(t < qt(alpha, k - 1))
## [1] 0.0523
n = 10000
k = 10
mu = 0
sigma = 2
mu0 = 1
alpha = 0.05
U = matrix(runif(k * n/2), n/2)
D = -2 * log(U)
V = matrix(runif(k * n/2), n/2)
Theta = 2 * pi * V
Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
X = sigma * Z + mu
Xbar = rowMeans(X)
S = apply(X, 1, sd)
t = (Xbar - mu0) * sqrt(k)/S
hist(t, "FD", freq = FALSE, main = NA, xlab = expression(Test ~ Statistic ~
    under ~ H[1]))
curve(dt(x, k - 1), add = TRUE, col = "red", lwd = 2)
```


Test Statistic under H_{1}
$\mathrm{p}=\mathrm{pt}(\mathrm{t}, \mathrm{k}-1)$
hist (p, FFD ", freq $=$ FALSE, main $=\mathrm{NA}, \mathrm{xlim}=\mathrm{c}(0,1)$, $\mathrm{xlab}=\operatorname{expression(P-}$
Value ~ under ~ H[1]))
curve(dunif(x), add = TRUE, col = "red", lwd = 2)


```
beta = mean(t < qt(alpha, k - 1))
print(beta)
## [1] 0.4231
n}=1000
k = seq(5, 100, 5)
mu = 0
sigma = 2
mu0 = 1
alpha = 0.05
```

```
beta = numeric(length(k))
for (j in 1:length(k)) {
    U = matrix(runif(k[j] * n/2), n/2)
    D = -2 * log(U)
    V = matrix(runif(k[j] * n/2), n/2)
    Theta = 2 * pi * V
    Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
    X = sigma * Z + mu
    Xbar = rowMeans(X)
    S = apply(X, 1, sd)
    t = (Xbar - mu0) * sqrt (k[j])/S
    beta[j] = mean(t < qt(alpha, k[j] - 1))
}
plot(k, beta, "b", xlab = "Sample Size", ylab = "Power", pch = 16, lwd = 2)
```


$\mathrm{n}=10000$
$\mathrm{k}=10$
$\mathrm{mu}=\operatorname{seq}(-1,1,0.1)$
sigma $=2$
$\mathrm{muO}=1$
alpha $=0.05$
beta $=$ numeric(length(mu))
for (j in 1:length(mu)) \{
$\mathrm{U}=\operatorname{matrix}($ runif $(\mathrm{k} * \mathrm{n} / 2)$, $\mathrm{n} / 2$)
D $=-2 * \log (\mathrm{U})$
$\mathrm{V}=\operatorname{matrix}($ runif $(\mathrm{k} * \mathrm{n} / 2), \mathrm{n} / 2)$
Theta $=2 *$ pi $* V$
$Z=r b i n d(s q r t(D) * \cos ($ Theta), sqrt(D) $* \sin ($ Theta))
$\mathrm{X}=\operatorname{sigma} * \mathrm{Z}+\mathrm{mu}[j]$

```
    Xbar = rowMeans(X)
    S = apply(X, 1, sd)
    t = (Xbar - mu0) * sqrt(k)/S
    beta[j] = mean(t < qt(alpha, k - 1))
}
plot(mu, beta, "b", xlab = "Mean", ylab = "Power", pch = 16, lwd = 2)
```



```
n = 10000
k = 10
mu = 0
sigma = seq(0.1, 2, 0.1)
mu0 = 1
alpha = 0.05
beta = numeric(length(sigma))
for (j in 1:length(sigma)) {
    U = matrix(runif(k * n/2), n/2)
    D = -2 * log(U)
    V = matrix(runif(k * n/2), n/2)
    Theta = 2 * pi * V
    Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
    X = sigma[j] * Z + mu
    Xbar = rowMeans(X)
    S = apply(X, 1, sd)
    t = (Xbar - mu0) * sqrt(k)/S
    beta[j] = mean(t < qt(alpha, k - 1))
}
plot(sigma, beta, "b", xlab = "Standard Deviation", ylab = "Power", pch = 16,
    lwd = 2)
```



```
n = 10000
k = 10
mu = 0
sigma = 2
mu0 = 1
alpha = seq(0.01, 0.2, 0.01)
beta = numeric(length(alpha))
for (j in 1:length(alpha)) {
    U = matrix(runif(k * n/2), n/2)
    D = -2* log(U)
    V = matrix(runif(k * n/2), n/2)
    Theta = 2 * pi * V
    Z = rbind(sqrt(D) * cos(Theta), sqrt(D) * sin(Theta))
    X = sigma * Z + mu
    Xbar = rowMeans(X)
    S = apply(X, 1, sd)
    t = (Xbar - mu0) * sqrt(k)/S
    beta[j] = mean(t < qt(alpha[j], k - 1))
}
plot(alpha, beta, "b", xlab = "Significance Level", ylab = "Power", pch = 16,
    lwd = 2)
```


We want to approximate the sum of the following series:

$$
S=\sum_{j=0}^{\infty} a_{j} .
$$

Consider the random variable X with PMF $p=\left[p_{j}\right]$. If we let $b_{j}=\frac{a_{j}}{p_{j}}$, then we observe that:

$$
S=\sum_{j=0}^{\infty} p_{j} \frac{a_{j}}{p_{j}}=\mathbb{E}\left(b_{X}\right)
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample following the PMF $p=\left[p_{j}\right]$. According to the strong law of large numbers, we know that:

$$
\frac{1}{n} \sum_{i=1}^{n} b_{X_{i}} \xrightarrow{\text { a.s. }} \mathbb{E}\left(b_{X}\right)=S .
$$

Example 2.11. We want to approximate the sum of the following series:

$$
S=\sum_{j=0}^{\infty} \frac{e^{-j^{2}}}{j!}
$$

Consider the random variable $X \sim$ Poisson(1) with PMF $p_{j}=e^{-1} / j$! for $j=0,1, \ldots$. Then, we observe that:

$$
S=\sum_{j=0}^{\infty} \frac{e^{-1}}{j!} e^{1-j^{2}}=\mathbb{E}\left(e^{1-X^{2}}\right)
$$

```
n = 1e+05
X = numeric(n)
for (i in 1:n) {
    U = runif(1)
    pmf = exp(-1)
    cdf = pmf
```

```
    while (U > cdf) {
    X[i] = X[i] + 1
    pmf = pmf/X[i]
    cdf = cdf + pmf
    }
}
I = mean(exp(1 - X^2))
print(I)
## [1] 1.37738
```

Lemma 2.1. Let X be a non-negative and discrete random variable. Then, it holds that:

$$
\mathbb{E}(X)=\sum_{k=0}^{\infty} \mathbb{P}(X>k)
$$

Proof. We observe that:

$$
\mathbb{E}(X)=\sum_{j=0}^{\infty} j \mathbb{P}(X=j)=\sum_{j=0}^{\infty} \sum_{k=0}^{j-1} \mathbb{P}(X=j)=\sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} \mathbb{P}(X=j)=\sum_{k=0}^{\infty} \mathbb{P}(X>k)
$$

Note 2.2. We know that $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]$.
Example 2.12. Let X_{1}, X_{2}, \ldots be a sequence of non-negative and discrete random variables. We want to approximate the expected value and the variance of the following random variable:

$$
N=\sup \left\{k \in \mathbb{N}: X_{1}<X_{2}<\cdots<X_{k-1}\right\}
$$

For $k \in \mathbb{N}$, we observe that:

$$
\mathbb{P}(N>k)=\mathbb{P}\left(X_{1}<X_{2}<\cdots<X_{k}\right)=\frac{1}{k!}
$$

Therefore, we calculate that:

$$
\mathbb{E}(N)=\sum_{k=0}^{\infty} \mathbb{P}(N>k)=\sum_{k=0}^{\infty} \frac{1}{k!}=e
$$

```
n = 1e+05
N = numeric(n)
for (i in 1:n) {
    Uold = runif(1)
    Unew = runif(1)
    N[i] = 2
    while (Uold < Unew) {
        Uold = Unew
        Unew = runif(1)
        N[i] = N[i] + 1
```

\}
\}
$\mathrm{I}=\operatorname{mean}(\mathrm{N})$
print(I)
\#\# [1] 2.71821
mean((N - I)^2)
\#\# [1] 0.7690844
Example 2.13. We roll k fair dice and we want to estimate the expected minimum number of rolls until all of the possible sums of their faces appear as a function of k.
$\mathrm{n}=1000$
$\mathrm{k}=1: 4$
I = numeric(length (k))
for (j in 1:length(k)) \{
$\mathrm{N}=$ numeric(n)
for (i in 1:n) \{
$\mathrm{S}=$ numeric ($6 * \mathrm{k}[\mathrm{j}]$)
while (sum(S == 0) >k[j] - 1) \{
$\mathrm{U}=\operatorname{runif}(\mathrm{k}[\mathrm{j}])$
Y = floor(6 * U) + 1
X = sum(Y)
$S[\mathrm{X}]=\mathrm{S}[\mathrm{X}]+1$
$N[i]=N[i]+1$
\}
\}
$I[j]=\operatorname{mean}(N)$
\}
plot(k, I, "b", xlab = "Number of Dice", ylab = "Expected Number of Rolls", pch = 16, 1 wd = 2)

Example 2.14. We want to estimate the probability that at least 2 out of k people have their birthday on the same day of the year as a function of k.
$\mathrm{n}=10000$
$\mathrm{k}=1: 40$
I = numeric (length(k))
for (j in 1:length (k)) \{
found $=\operatorname{logical(n)}$
for (i in 1:n) \{
D = numeric (365)
$1=0$
while (!found[i] \&\& l < k[j]) \{
$\mathrm{U}=\operatorname{runif}(1)$
$X=$ floor $(365 * U)+1$
if (D $[X]==1$) \{
found[i] = TRUE
\} else \{
$\mathrm{D}[\mathrm{X}]=\mathrm{D}[\mathrm{X}]+1$
$1=1+1$ \}
\}
\}
$I[j]=$ mean(found)
\}
plot(k, I, "b", xlab = "Number of People", ylab = "Probability of Sharing Birthday", pch = 16, lwd = 2)

Example 2.15. Consider a square of $\operatorname{side} 2 k$ for $k \in \mathbb{N}$ centered on the axis origin. A body performs a random walk on the pairs of integers starting from the axis origin until it arrives at the border of the square. We want to estimate the expected number of steps it will take as a function of k.

```
n = 10000
k = 1:10
I = numeric(length(k))
for (j in 1:length(k)) {
    N = numeric(n)
    for (i in 1:n) {
        X = 0
        Y = 0
        while (abs(X) < k[j] && abs(Y) < k[j]) {
            U = runif(1)
                if (U <= 0.25) {
                    X = X + 1
                } else if (U <= 0.5) {
                    Y = Y + 1
                } else if (U <= 0.75) {
                    X = X - 1
                } else {
                    Y = Y - 1
                }
                N[i] = N[i] + 1
        }
    }
    I[j] = mean(N)
}
plot(k, I, "b", xlab = "Side Half-Length", ylab = "Expected Number of Steps",
```

$$
\mathrm{pch}=16, \operatorname{lwd}=2)
$$

3 Discrete-Event Simulation

Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. We want to simulate the state of the system over time.

Input: Arrival rate λ and service rate μ.
We let $Q \leftarrow 0, D \leftarrow \infty$, we simulate $A \sim \operatorname{Exp}(\lambda)$ and we iterate the following steps:
1: We let $t \leftarrow \min \{A, D\}$.
2: If $t=A$, then:
i: We let $Q \leftarrow Q+1$, we simulate $R \sim \operatorname{Exp}(\lambda)$ and we let $A \leftarrow t+R$.
ii: If $Q=1$, then we simulate $X \sim \operatorname{Exp}(\mu)$ and we let $D \leftarrow t+X$.
If $t=D$, then:
i: We let $Q \leftarrow Q-1$.
ii: If $Q>0$, then we simulate $X \sim \operatorname{Exp}(\mu)$ and we let $D \leftarrow t+X$. Otherwise, We let $D \leftarrow \infty$.

Example 3.1. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. The partial busy period of the system is defined as the time period between an arrival which finds the system empty until a departure which leaves the system again empty. We want to estimate the average duration of a partial busy period and the expected maximum number of customers present in the system during a partial busy period.

```
n = 10000
lambda = 4
mu = 6
Y = numeric(n)
M = numeric(n)
for (i in 1:n) {
    U = runif(1)
    A = -log(U)/lambda
    t = A
    Q = 1
    Y[i] = t
    M[i] = 1
    U = runif(1)
    A = t - log(U)/lambda
    V = runif(1)
    D = t - log(V)/mu
    while (Q > 0) {
        t = min(A, D)
        if (t == A) {
            Q = Q + 1
            U = runif(1)
```

```
            A = t - log(U)/lambda
            if (Q == 1) {
                    V = runif(1)
                            D = t - log(V)/mu
            }
            M[i] = max(M[i], Q)
        } else {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
            } else {
                    D = Inf
            }
        }
    }
    Y[i] = t - Y[i]
}
mean(Y)
## [1] 0.4986261
mean(M)
## [1] 1.9508
```

Example 3.2. Consider a $M / E_{s} / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Gamma}(s, \mu)$ distribution. Suppose that there exists some time point T^{*} after which no new arrivals in the system are allowed, but the server continues servicing all customers who were already present in the system before time T^{*}. We want to estimate the expected overtime put in by the server, the average sojourn time (total time a customer spends in the system) and the expected total idle time of the server.

```
n = 1000
lambda = 10
mu = 40
s = 3
Tstar = 100
S = numeric(n)
I = numeric(n)
0 = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    t = A
    N = 0
```

```
    temp = 0
    arrivals = numeric(0)
    while (t < Tstar || Q > 0) {
        if (t == A) {
        Q = Q + 1
        U = runif(1)
        A = t - log(U)/lambda
        if (A > Tstar) {
            A = Inf
        }
        if (Q == 1) {
            V = runif(s)
            D = t - log(prod(V))/mu
            I[i] = I[i] + t - temp
        }
        N = N + 1
        arrivals = c(arrivals, t)
    } else {
        Q = Q - 1
        if (Q > 0) {
            V = runif(s)
            D = t - log(prod(V))/mu
        } else {
            D = Inf
            temp = t
        }
        S[i] = S[i] + t - arrivals[1]
        arrivals = arrivals[-1]
    }
    t = min(A, D)
    }
    S[i] = S[i]/N
    O[i] = max(temp - Tstar, 0)
}
mean(S)
## [1] 0.2221672
mean(0)
## [1] 0.1529004
mean(I)
## [1] 25.13479
```

Example 3.3. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. When the system becomes empty, the server goes on working vacation and returns back to the normal working period only if there are s customers in the system. We want to estimate the expected percentage of time until time point T^{*} when there are at least m customers in the system.

```
n = 1000
lambda = 4
mu = 6
s = 10
m = 12
Tstar = 100
P = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    D = Inf
    t = A
    vacation = TRUE
    while (t < Tstar) {
        if (t == A) {
            Q = Q + 1
            U = runif(1)
            A = t - log(U)/lambda
            if (Q == s && vacation) {
                    V = runif(1)
                    D = t - log(V)/mu
                    vacation = FALSE
                }
            if (Q == m) {
                    temp = t
                }
        } else {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
                } else {
                    D = Inf
                    vacation = TRUE
                }
            if (Q == m - 1) {
                    P[i] = P[i] + t - temp
        }
```

```
        }
        t = min(A, D)
    }
    if (Q >= m) {
        P[i] = P[i] + Tstar - temp
    }
    P[i] = 100 * P[i]/Tstar
}
mean(P)
## [1] 8.75385
```

Example 3.4. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. Suppose that each customer waits in the queue for a time period which follows the Unif[0, ν] distribution before departing without getting serviced. We want to estimate the average number of lost customers until time T^{*}.
$\mathrm{n}=1000$
lambda $=5$
$\mathrm{mu}=4$
$n u=5$
Tstar $=100$
$\mathrm{L}=$ numeric (n)
for (i in 1:n) \{
$\mathrm{Q}=0$
$\mathrm{U}=\operatorname{runif}(1)$
$A=-\log (U) / l a m b d a$
$\mathrm{t}=\mathrm{A}$
$\mathrm{R}=$ numeric (0)
while (t < Tstar) \{
if ($t=A$) \{
$Q=Q+1$
$\mathrm{U}=$ runif(1)
$\mathrm{A}=\mathrm{t}-\log (\mathrm{U}) / \operatorname{lambda}$
if (Q == 1) \{
$\mathrm{V}=$ runif (1)
$D=t-\log (V) / m u$ \} else \{
$\mathrm{W}=\operatorname{runif}(1)$
$\mathrm{R}=\mathrm{c}(\mathrm{R}, \mathrm{t}+\mathrm{nu} * \mathrm{~W})$ \}
\} else if ($\mathrm{t}==\mathrm{D}$) \{ $Q=Q-1$ if (Q > 0) \{

```
                    V = runif(1)
            D = t - log(V)/mu
            R = R[-1]
        } else {
            D = Inf
        }
        } else {
        Q = Q - 1
        R = R[-which.min(R)]
        L[i] = L[i] + 1
        }
        t = min(A, D, R)
    }
}
mean(L)
## [1] 118.119
```

Example 3.5. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. Suppose that each customer waits in the queue for a time period which follows the Unif $[0, \nu]$ distribution before departing without getting serviced. Suppose also that, every time a service is completed, the customer with the shortest departure time from the system is chosen to be served next. We want to compare the average number of lost customers until time T^{*} with that of the previous example.

```
n = 1000
lambda = 5
mu = 4
nu = 5
Tstar = 100
L = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    t = A
    R = numeric(0)
    while (t < Tstar) {
        if (t == A) {
            Q = Q + 1
            U = runif(1)
            A = t - log(U)/lambda
            if (Q == 1) {
                    V = runif(1)
                    D = t - log(V)/mu
```

```
        } else {
                W = runif(1)
                R}=\textrm{c}(\textrm{R},\textrm{t}+\textrm{nu}*\textrm{W}
        }
    } else if (t == D) {
        Q = Q - 1
        if (Q > 0) {
            V = runif(1)
            D = t - log(V)/mu
            R = R[-which.min(R)]
        } else {
            D = Inf
        }
        } else {
            Q = Q - 1
            R = R[-which.min(R)]
            L[i] = L[i] + 1
        }
        t = min(A, D, R)
    }
}
mean(L)
## [1] 100.265
```

Example 3.6. Consider a queuing network constituting of two serial $M / M / 1$ queuing systems, where the arrival process at the first system is Poisson with rate λ and the services times at system j follow the $\operatorname{Exp}\left(\mu_{j}\right)$ distribution. Suppose that there exists some time point T^{*} after which no new arrivals in the system are allowed, but the servers continue servicing all customers already present in the network before time T^{*}. We want to estimate the average sojourn time of a customer within each of the two systems.

```
n = 1000
lambda = 4
mu1 = 5
mu2 = 6
Tstar = 100
S1 = numeric(n)
S2 = numeric(n)
for (i in 1:n) {
    Q1 = 0
    Q2 = 0
    U = runif(1)
    A = -log(U)/lambda
    D2 = Inf
```

```
t = A
N = 0
A1 = numeric(0)
A2 = numeric(0)
while (t < Tstar || Q1 > 0 || Q2 > 0) {
    if (t == A) {
        Q1 = Q1 + 1
        U = runif(1)
        A = t - log(U)/lambda
        if (A > Tstar) {
            A = Inf
        }
        if (Q1 == 1) {
            V = runif(1)
            D1 = t - log(V)/mu1
        }
        N = N + 1
        A1 = c(A1, t)
    } else if (t == D1) {
        Q1 = Q1 - 1
        Q2 = Q2 + 1
        if (Q1 > 0) {
            V = runif(1)
            D1 = t - log(V)/mu1
        } else {
            D1 = Inf
        }
        if (Q2 == 1) {
            W = runif(1)
            D2 = t - log(W)/mu2
        }
        A2 = c(A2, t)
        S1[i] = S1[i] + t - A1[1]
        A1 = A1[-1]
    } else {
        Q2 = Q2 - 1
        if (Q2 > 0) {
            W = runif(1)
            D2 = t - log(W)/mu2
        } else {
            D2 = Inf
        }
        S2[i] = S2[i] + t - A2[1]
```

```
            A2 = A2[-1]
        }
        t = min(A, D1, D2)
    }
    S1[i] = S1[i]/N
    S2[i] = S2[i]/N
}
mean(S1)
## [1] 0.9374927
mean(S2)
## [1] 0.4806224
```

Example 3.7. Consider a $M / M / c$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. We want to estimate the average sojourn time of a customer in the system and the expected percentage of the first N^{*} services which are performed by each of the servers.

```
n = 1000
c = 2
lambda = 6
mu = c(4, 3)
Nstar = 1000
S = numeric(n)
P = matrix(0, n, c)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    D = rep(Inf, c)
    N = 0
    arrivals = numeric(0)
    while (N < Nstar || Q > 0) {
        t = min(A, D)
        if (t == A) {
            Q = Q + 1
            N = N + 1
            if (N < Nstar) {
                    U = runif(1)
                    A = t - log(U)/lambda
            } else {
                    A = Inf
            }
            if (Q <= c) {
                    I = match(Inf, D)
```

```
                    V = runif(1)
                    D[I] = t - log(V)/mu[I]
                    S[i] = S[i] + D[I] - t
        } else {
            arrivals = c(arrivals, t)
        }
        } else {
        Q = Q - 1
        I = which.min(D)
        if (Q >= c) {
            V = runif(1)
            D[I] = t - log(V)/mu[I]
            S[i] = S[i] + D[I] - arrivals[1]
            arrivals = arrivals[-1]
        } else {
            D[I] = Inf
        }
        P[i, I] = P[i, I] + 1
        }
    }
    S[i] = S[i]/Nstar
    P[i, ] = P[i, ]/Nstar
}
mean(S)
## [1] 1.021141
colMeans(P)
## [1] 0.58169 0.41831
```

Example 3.8. Consider a $M / M / c$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. Suppose that there exists some time point T^{*} when the system breaks down and the customers who haven't already finished getting serviced are lost. We want to estimate the average sojourn time in the system of a customer who has finished getting serviced before time point T^{*}, the average number of lost customers and the probability of losing more than 2 customers.
$\mathrm{n}=1000$
c $=2$
lambda $=6$
$\mathrm{mu}=\mathrm{c}(4,3)$
Tstar $=100$
S = numeric(n)
Q = numeric (n)
for (i in 1:n) \{
$\mathrm{U}=$ runif(1)

```
    A = -log(U)/lambda
    D = rep(Inf, c)
    t = A
    N = 0
    arrivals = numeric(0)
    while (t < Tstar) {
        if (t == A) {
            Q[i] = Q[i] + 1
            U = runif(1)
            A = t - log(U)/lambda
            if (Q[i] <= c) {
                    I = match(Inf, D)
                    V = runif(1)
                    D[I] = t - log(V)/mu[I]
                    if (D[I] < Tstar) {
                        S[i] = S[i] + D[I] - t
                    }
                } else {
                    arrivals = c(arrivals, t)
                }
            } else {
                Q[i] = Q[i] - 1
            I = which.min(D)
            if (Q[i] >= c) {
                    V = runif(1)
                    D[I] = t - log(V)/mu[I]
                    if (D[I] < Tstar) {
                    S[i] = S[i] + D[I] - arrivals[1]
                    }
            arrivals = arrivals[-1]
        } else {
            D[I] = Inf
        }
        N = N + 1
    }
    t = min(A, D)
    }
    S[i] = S[i]/N
}
mean(S)
## [1] 0.9902442
```

```
mean(Q)
```

\#\# [1] 6.151
mean $(\mathrm{Q}>2)$
\#\# [1] 0.655

Example 3.9. Consider a queuing network consisting of two parallel $M / M / 1$ queuing systems, where the arrival process at the network is Poisson with rate λ and the service times at system j follow the $\operatorname{Exp}\left(\mu_{j}\right)$ distribution. Suppose that an arriving customer enters the system with the shortest queue or the first system if both have the same number of customers. We want to estimate the average sojourn time of a customer in the system and the expected percentage of the first N^{*} customers who enter the first system.

```
n = 1000
lambda = 6
mu1 = 4
mu2 = 3
Nstar = 1000
S = numeric(n)
P = numeric(n)
for (i in 1:n) {
    Q1 = 0
    Q2 = 0
    U = runif(1)
    A = -log(U)/lambda
    D1 = Inf
    D2 = Inf
    N = 0
    A1 = numeric(0)
    A2 = numeric(0)
    while (N < Nstar || Q1 > 0 || Q2 > 0) {
        t = min(A, D1, D2)
        if (t == A) {
            if (Q1 <= Q2) {
                Q1 = Q1 + 1
                if (Q1 == 1) {
                    V = runif(1)
                D1 = t - log(V)/mu1
                }
                A1 = c(A1, t)
            } else {
                Q2 = Q2 + 1
                if (Q2 == 1) {
                    W = runif(1)
                    D2 = t - log(W)/mu2
```

```
        }
            A2 = c(A2, t)
        }
        N = N + 1
        if (N < Nstar) {
            U = runif(1)
            A = t - log(U)/lambda
        } else {
            A = Inf
        }
        } else if (t == D1) {
            Q1 = Q1 - 1
            if (Q1 > 0) {
            V = runif(1)
            D1 = t - log(V)/mu1
        } else {
            D1 = Inf
        }
        P[i] = P[i] + 1
        S[i] = S[i] + t - A1[1]
        A1 = A1[-1]
        } else {
            Q2 = Q2 - 1
            if (Q2 > 0) {
            W = runif(1)
            D2 = t - log(W)/mu2
        } else {
            D2 = Inf
        }
        S[i] = S[i] + t - A2[1]
        A2 = A2[-1]
        }
    }
    S[i] = S[i]/Nstar
    P[i] = P[i]/Nstar
}
mean(S)
## [1] 1.072401
mean(P)
## [1] 0.583024
```

Example 3.10. Consider a queuing network consisting of two parallel $M / M / 1$ queuing systems, where the arrival
process at the network is Poisson with rate λ and the service times at system j follow the $\operatorname{Exp}\left(\mu_{j}\right)$ distribution. Suppose that an arriving customer enters the first system with probability p, where p is the estimated percentage of the first N^{*} customers who enter the first system of the previous example. We want to compare the average sojourn time of a customer in the system with that of the previous example.

```
n = 1000
lambda = 6
mu1 = 4
mu2 = 3
Nstar = 1000
p = mean(P)
S = numeric(n)
for (i in 1:n) {
    Q1 = 0
    Q2 = 0
    U = runif(1)
    A = -log(U)/lambda
    D1 = Inf
    D2 = Inf
    N = 0
    A1 = numeric(0)
    A2 = numeric(0)
    while (N < Nstar || Q1 > 0 || Q2 > 0) {
        t = min(A, D1, D2)
        if (t == A) {
            U = runif(1)
            if (U < p) {
                    Q1 = Q1 + 1
                    if (Q1 == 1) {
                V = runif(1)
                D1 = t - log(V)/mu1
                    }
                    A1 = c(A1, t)
            } else {
                    Q2 = Q2 + 1
                    if (Q2 == 1) {
                W = runif(1)
                D2 = t - log(W)/mu2
                    }
                    A2 = c(A2, t)
            }
            N = N + 1
            if (N < Nstar) {
                    U = runif(1)
```

```
                    A = t - log(U)/lambda
            } else {
                A = Inf
            }
        } else if (t == D1) {
            Q1 = Q1 - 1
            if (Q1 > 0) {
                    V = runif(1)
                    D1 = t - log(V)/mu1
        } else {
            D1 = Inf
        }
        S[i] = S[i] + t - A1[1]
        A1 = A1[-1]
        } else {
            Q2 = Q2 - 1
            if (Q2 > 0) {
                    W = runif(1)
                    D2 = t - log(W)/mu2
        } else {
            D2 = Inf
        }
        S[i] = S[i] + t - A2[1]
        A2 = A2[-1]
    }
    }
    S[i] = S[i]/Nstar
}
mean(S)
## [1] 1.827888
```

Example 3.11. Consider a system which requires N machines for it to function. Suppose that there exist s backup machines in the system. Every machine functions for a time period which follows the $\operatorname{Exp}(\lambda)$ distribution before breaking down. Whenever a machine breaks down, it's immediately replaced by a backup and it's sent to the repair shop. A repairman fixes the machines in time which follows the $\operatorname{Exp}(\mu)$ distribution. As soon as a machine gets fixed, it becomes available as a backup for whenever it might be needed. The system stops working when a machine breaks down and there's no backup to replace it. We want to estimate the expected amount of time until the system stops working.
$\mathrm{n}=1 \mathrm{e}+05$
lambda = 1
$\mathrm{mu}=2$
$\mathrm{s}=3$

```
N}=
C = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(N)
    A = -log(U)/lambda
    D = Inf
    while (Q <= s) {
        t = min(A, D)
        if (t == D) {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                D = t - log(V)/mu
            } else {
                    D = Inf
                }
        } else {
            Q = Q + 1
            U = runif(1)
            A[which.min(A)] = t - log(U)/lambda
            if (Q == 1) {
                    V = runif(1)
                    D = t - log(V)/mu
                }
        }
    }
    C[i] = t
}
mean(C)
## [1] 1.536251
```

Lemma 3.1. Let $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$ be independent random variables. Then, we infer that:

$$
W=\min \{X, Y\} \sim \operatorname{Exp}(\lambda+\mu)
$$

Proof. For $w>0$, we calculate that:

$$
\begin{aligned}
F_{W}(w) & =\mathbb{P}(\min \{X, Y\} \leqslant w)=1-\mathbb{P}(\min \{X, Y\}>w)=1-\mathbb{P}(X>w, Y>w) \\
& =1-\mathbb{P}(X>w) \mathbb{P}(Y>w)=1-\left[1-F_{X}(w)\right]\left[1-F_{Y}(w)\right]=1-e^{-\lambda w} e^{-\mu w}=1-e^{-(\lambda+\mu) w}
\end{aligned}
$$

Corollary 3.1. The time until 1 out of the N functioning machines breaks down follows the $\operatorname{Exp}(N \lambda)$ distribution.

```
C = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/(N * lambda)
    D = Inf
    while (Q <= s) {
        t = min(A, D)
        if (t == A) {
            Q = Q + 1
            U = runif(1)
            A = t - log(U)/(N * lambda)
            if (Q == 1) {
                    V = runif(1)
                    D = t - log(V)/mu
            }
        } else {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
            } else {
                    D = Inf
                }
        }
    }
    C[i] = t
}
mean(C)
\#\# [1] 1.531271
```

Example 3.12. Suppose that messages arrive at a communications facility according to a Poisson process with rate λ. The facility has communication channels. If all of the channels are busy at the arrival time of a new message, then the message is lost. The weather is initially nice and alternates between nice and bad periods lasting s_{1} and s_{2} hours respectively. If the weather is nice at the arrival time of a new message, then the time required for its decoding follows the $\operatorname{Beta}\left(\mu_{1}, 1\right)$ distribution, otherwise it follows the $\operatorname{Beta}\left(\mu_{2}, 1\right)$ distribution. We want to estimate the average number of lost messages up to time T^{*}.
n $=1000$
c $=3$
lambda = 2
$\mathrm{mu}=\mathrm{c}(1,3)$
$\mathrm{s}=\mathrm{c}(2,1)$

```
Tstar = 100
L = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    D = rep(Inf, c)
    t = A
    while (t < Tstar) {
        if (t == A) {
            U = runif(1)
                A = t - log(U)/lambda
                if (Q < c) {
                    Q = Q + 1
                    V = runif(1)
                    if (t%%sum(s) <= s[1]) {
                    D[match(Inf, D)] = t + V^(1/mu[1])
                    } else {
                        D[match(Inf, D)] = t + V^(1/mu[2])
                    }
                } else {
                    L[i] = L[i] + 1
                }
        } else {
            Q = Q - 1
            D[which.min(D)] = Inf
        }
        t = min(A, D)
    }
}
mean(L)
## [1] 17.229
```


4 Variance Reduction Techniques

Antithetic Variables

Let X_{1}, X_{2}, X, Y be identically distributed random variables with expected value μ and variance σ^{2}. Suppose that the random variables X_{1}, X_{2} are independent, whereas the random variables X, Y have covariance $\operatorname{Cov}(X, Y)=\sigma_{X Y}$ and Pearson correlation coefficient $\operatorname{Corr}(X, Y)=\rho_{X Y}$. Then, we observe that:

$$
\begin{gathered}
\mathbb{E}\left(\frac{X_{1}+X_{2}}{2}\right)=\mathbb{E}\left(\frac{X+Y}{2}\right)=\mu \\
\operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}\right)=\frac{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)}{4}=\frac{\sigma^{2}}{2} \\
\operatorname{Var}\left(\frac{X+Y}{2}\right)=\frac{\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)}{4}=\frac{\sigma^{2}+\sigma_{X Y}}{2}, \\
\operatorname{Var}\left(\frac{X+Y}{2}\right)<\operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}\right) \Leftrightarrow \sigma_{X Y}<0
\end{gathered}
$$

The percentage of variance reduction for an estimator of μ by use of the antithetic variables method is equal to:

$$
100 \cdot \frac{\sigma^{2}-\left(\sigma^{2}+\sigma_{X Y}\right)}{\sigma^{2}}=100 \cdot \frac{\left|\sigma_{X Y}\right|}{\sigma^{2}}=100 \cdot\left|\rho_{X Y}\right|
$$

Proposition 4.1. Let $U_{1}, U_{2}, \ldots, U_{k} \sim \operatorname{Unif}[0,1]$ be independent random variables. Suppose that $h:[0,1]^{k} \rightarrow \mathbb{R}$ is a monotone function of each of its arguments. Then, it holds that:

$$
\operatorname{Cov}\left[h\left(U_{1}, \ldots, U_{k}\right), h\left(1-U_{1}, \ldots, 1-U_{k}\right)\right] \leqslant 0
$$

Corollary 4.1. Let $U, U_{1}, U_{2} \sim \operatorname{Unif}[0,1]$ be independent random variables. Consider a monotone function $h:[0,1] \rightarrow \mathbb{R}$. Then, it holds that:

$$
\begin{aligned}
\mathbb{E}\left[\frac{h(U)+h(1-U)}{2}\right] & =\mathbb{E}\left[\frac{h\left(U_{1}\right)+h\left(U_{2}\right)}{2}\right], \\
\operatorname{Var}\left[\frac{h(U)+h(1-U)}{2}\right] & \leqslant \operatorname{Var}\left[\frac{h\left(U_{1}\right)+h\left(U_{2}\right)}{2}\right] .
\end{aligned}
$$

Example 4.1. Let $U \sim \operatorname{Unif}[0,1]$ be a random variable. We want to estimate the expected value $\mathbb{E}\left(e^{U}\right)$. We observe that the function $h(x)=e^{x}$ is increasing for $x \in[0,1]$.
$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$X=\exp (U)$
$I=\operatorname{mean}(X)$
print(I)
\#\# [1] 1.718251

```
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.2427706
U = runif(n/2)
X = exp(U)
Y = exp(1 - U)
W = (X + Y)/2
I = mean(W)
print(I)
## [1] 1.718183
VarW = mean((W - I) ^2)
print(VarW)
## [1] 0.003916482
rho = (2 * VarW - VarX)/VarX
print(rho)
## [1] -0.9677351
100 * abs(rho)
## [1] 96.77351
```

Example 4.2. Let $U, V \sim \operatorname{Unif}[0,1]$ be independent random variables. We want to estimate the expected value $\mathbb{E}\left[e^{(U+V)^{2}}\right]$. We observe that $h(x, y)=e^{(x+y)^{2}}$ is an increasing function of each of its arguments for $x, y \in[0,1]$.
$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=\exp \left((\mathrm{U}+\mathrm{V})^{\wedge} 2\right)$
I = mean(X)
print(I)
\#\# [1] 4.886297
VarX $=\operatorname{mean}\left((X-I)^{\wedge} 2\right)$
print ($\operatorname{Var} \mathrm{X}$)
\#\# [1] 35.24747
$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n} / 2)$
$X=\exp \left((U+V)^{\wedge} 2\right)$
$Y=\exp \left((2-U-V)^{\wedge} 2\right)$
$\mathrm{W}=(\mathrm{X}+\mathrm{Y}) / 2$

```
I = mean(W)
print(I)
## [1] 4.897734
VarW = mean((W - I)^2)
print(VarW)
## [1] 11.51644
rho = (2 * VarW - VarX)/VarX
print(rho)
## [1] -0.3465383
100 * abs(rho)
## [1] 34.65383
```

Example 4.3. Let $U_{1}, U_{2}, \cdots \sim \operatorname{Unif}[0,1]$ be a sequence of independent random variables. We want to estimate the expected value of the following random variable:

$$
X=\sup \left\{k \in \mathbb{N}: U_{1}<U_{2}<\cdots<U_{k-1}\right\}
$$

We define the following random variable:

$$
Y=\sup \left\{k \in \mathbb{N}: 1-U_{1}<1-U_{2}<\cdots<1-U_{k-1}\right\}=\sup \left\{k \in \mathbb{N}: U_{1}>U_{2}>\cdots>U_{k-1}\right\}
$$

$\mathrm{n}=1 \mathrm{e}+06$
$\mathrm{X}=$ numeric (n)
for (i in 1:n) \{
Uold $=$ runif (1)
Unew = runif(1)
$X[i]=2$
while (Uold < Unew) \{
Uold = Unew
Unew = runif(1)
$X[i]=X[i]+1$
\}
\}
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 2.717766
$\operatorname{Var} \mathrm{X}=\operatorname{mean}\left((\mathrm{X}-\mathrm{I})^{\wedge} 2\right)$
print(VarX)
\#\# [1] 0.765044

```
X = numeric(n/2)
Y = numeric(n/2)
for (i in 1:(n/2)) {
    Uold = runif(1)
    Unew = runif(1)
    X[i] = 2
    Y[i] = 2
    if (Uold < Unew) {
        while (Uold < Unew) {
            Uold = Unew
            Unew = runif(1)
            X[i] = X[i] + 1
        }
    } else {
        while (Uold > Unew) {
            Uold = Unew
            Unew = runif(1)
            Y[i] = Y[i] + 1
        }
    }
}
W = (X + Y)/2
I = mean(W)
print(I)
## [1] 2.718524
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.1254453
rho = (2 * VarW - VarX)/VarX
print(rho)
## [1] -0.6720574
100 * abs(rho)
## [1] 67.20574
```

Note 4.1. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a random variable. Then, the random variable $Y=2 \mu-X$ is identically distributed and negatively correlated with X.

Example 4.4. Let $Z \sim \mathcal{N}(0,1)$ be a random variable. We want to estimate the random variable $\mathbb{E}\left(e^{Z}\right)$.
$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$

```
D = -2 * log(U)
V = runif(n/2)
Theta = 2 * pi * V
Z = sqrt(D) * c(cos(Theta), sin(Theta))
X = exp(Z)
I = mean(X)
print(I)
## [1] 1.651902
VarX = mean((X - I) ^2)
print(VarX)
## [1] 4.685197
U = runif(n/4)
D = -2 * log(U)
V = runif(n/4)
Theta = 2 * pi * V
Z = sqrt(D) * c(cos(Theta), sin(Theta))
X = exp(Z)
Y = exp(-Z)
W = (X + Y)/2
I = mean(W)
print(I)
## [1] 1.654055
VarW = mean((W - I)^2)
print(VarW)
## [1] 1.504112
rho = (2 * VarW - VarX)/VarX
print(rho)
## [1] -0.3579303
100 * abs(rho)
## [1] 35.79303
```


Control Variables

Consider 2 random variables X and Y with $\mathbb{E}(X)=\mu, \mathbb{E}(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}, \operatorname{Cov}(X, Y)=\sigma_{X Y}$ and $\operatorname{Corr}(X, Y)=\rho_{X Y}$. We observe that the random variable $W_{c}=X+c\left(Y-\mu_{Y}\right)$ also has expected value μ for every $c \in \mathbb{R}$. We calculate that:

$$
\operatorname{Var}\left(W_{c}\right)=\operatorname{Var}(X)+c^{2} \operatorname{Var}\left(Y-\mu_{Y}\right)+2 c \operatorname{Cov}\left(X, Y-\mu_{Y}\right)=\sigma_{Y}^{2} c^{2}+2 \sigma_{X Y} c+\sigma_{X}^{2}
$$

Since $\sigma_{Y}^{2}>0$, we know that the function $\operatorname{Var}\left(W_{c}\right)$ has a unique global minimum at:

$$
c^{*}=-\frac{\sigma_{X Y}}{\sigma_{Y}^{2}}
$$

We observe that:

$$
\operatorname{Var}\left(W_{c^{*}}\right)=\frac{\sigma_{X Y}^{2}}{\sigma_{Y}^{2}}-2 \frac{\sigma_{X Y}^{2}}{\sigma_{Y}^{2}}+\sigma_{X}^{2}=\sigma_{X}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{Y}^{2}}=\sigma_{X}^{2}\left(1-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{2} \sigma_{Y}^{2}}\right)=\sigma_{X}^{2}\left(1-\rho_{X Y}^{2}\right) \leqslant \sigma_{X}^{2}
$$

Therefore, the percentage of variance reduction for an estimator of μ by use of the control variable method is equal to:

$$
100 \cdot \frac{\sigma_{X}^{2}-\sigma_{X}^{2}\left(1-\rho_{X Y}^{2}\right)}{\sigma_{X}^{2}}=100 \cdot \rho_{X Y}^{2}
$$

If X and Y are uncorrelated, then $\operatorname{Var}\left(W_{c^{*}}\right)=\sigma_{X}^{2}$, i.e. no variance reduction may be achieved for this specific choice of control variable Y. It's usually not possible to directly calculate the quantities $\sigma_{X Y}$ and σ_{Y}^{2}, so they're estimated from the simulated sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ as follows:

$$
\widehat{\sigma}_{X Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right), \quad \widehat{\sigma}_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Example 4.5. Let $U \sim \operatorname{Unif}[0,1]$ be a random variable. We want to estimate the expected value $\mathbb{E}\left(\sqrt{1-U^{2}}\right)$. We will first use $Y=U$ as a control variable with $\mathbb{E}(Y)=0.5$.

```
n = 1e+05
U = runif(n)
X = sqrt(1 - U^2)
I = mean(X)
print(I)
## [1] 0.78518
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.05000468
Y = U
muY = 0.5
VarY = var(Y)
Cov = cov(X, Y)
c = -Cov/VarY
W = X + c * (Y - muY)
I = mean(W)
print(I)
## [1] 0.7850612
VarW = mean((W - I)^2)
print(VarW)
```

```
## [1] 0.007591752
rho = Cov/sqrt(VarX * VarY)
print(rho)
## [1] -0.920971
100 * rho^2
## [1] 84.81877
```

We will then use $Y=U^{2}$ as a control variable with:

$$
\mathbb{E}(Y)=\operatorname{Var}(U)+[\mathbb{E}(U)]^{2}=\frac{1}{12}+\frac{1}{4}=\frac{1}{3}
$$

$\mathrm{Y}=\mathrm{U}^{\wedge} 2$
muY $=1 / 3$
$\operatorname{Var} Y=\operatorname{var}(Y)$
$\operatorname{Cov}=\operatorname{cov}(X, Y)$
$c=-\operatorname{Cov} / \operatorname{Var} Y$
$\mathrm{W}=\mathrm{X}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
$\mathrm{I}=\operatorname{mean}(\mathrm{W})$
print(I)
\#\# [1] 0.7852937
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print(VarW)
\#\# [1] 0.001647797
rho $=\operatorname{Cov} / s q r t(\operatorname{VarX} * \operatorname{Var} Y)$
print(rho)
\#\# [1] -0.9833905
100 * rho ${ }^{\wedge} 2$
\#\# [1] 96.70568
Example 4.6. Let $S \sim \operatorname{Gamma}(2,1)$ be a random variable. We want to estimate the probability $\mathbb{P}\left(S^{2} \leqslant 4\right)$. We will first use $Y=S$ as a control variable with $\mathbb{E}(Y)=2$.
$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{matrix}(\operatorname{runif}(2 * \mathrm{n}), \mathrm{n})$
$R=-\log (U)$
S = rowSums (R)
$X=S \wedge 2<=4$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.59344

```
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.241269
Y = S
muY = 2
VarY = var(Y)
Cov = cov(X, Y)
c = -Cov/VarY
W = X + c * (Y - muY)
I = mean(W)
print(I)
## [1] 0.5937954
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.09494908
rho = Cov/sqrt(VarX * VarY)
print(rho)
## [1] -0.7787591
100 * rho^2
## [1] 60.64657
```

We will then use $Y=S^{2}$ as a control variable with:

$$
\mathbb{E}(Y)=\operatorname{Var}(S)+[\mathbb{E}(S)]^{2}=2+4=6
$$

$\mathrm{Y}=\mathrm{S}^{\wedge} 2$
muY $=6$
$\operatorname{Var} Y=\operatorname{var}(\mathrm{Y})$
$\operatorname{Cov}=\operatorname{cov}(X, Y)$
$c=-\operatorname{Cov} / \operatorname{Var} Y$
$\mathrm{W}=\mathrm{X}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
I $=$ mean (W)
print(I)
\#\# [1] 0.5936546
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print (VarW)
\#\# [1] 0.1553603

```
rho = Cov/sqrt(VarX * VarY)
print(rho)
## [1] -0.5967191
100 * rho^2
\#\# [1] 35.60737
```


Conditioning Method

Let X, Y be two random variables with $\mathbb{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. According to the law of iterated expectations, we know that $\mathbb{E}(X)=\mathbb{E}[\mathbb{E}(X \mid Y)]$, i.e. the random variable $W=\mathbb{E}(X \mid Y)$ also has expected value μ. According to the law of total variance, we know that:

$$
\operatorname{Var}(X)=\operatorname{Var}[\mathbb{E}(X \mid Y)]+\mathbb{E}[\operatorname{Var}(X \mid Y)] \quad \Rightarrow \quad \operatorname{Var}[\mathbb{E}(X \mid Y)] \leqslant \sigma^{2}
$$

The percentage of variance reduction for an estimator of μ by use of the conditioning method is equal to:

$$
100 \cdot \frac{\operatorname{Var}(X)-\operatorname{Var}[\mathbb{E}(X \mid Y)]}{\operatorname{Var}(X)}=100 \cdot \frac{\mathbb{E}[\operatorname{Var}(X \mid Y)]}{\sigma^{2}}
$$

Note 4.2. We know that $\operatorname{Var}(X \mid Y) \equiv 0$ if and only if $X=g(Y)$ for some measurable function g. In this case, we observe that $\operatorname{Var}[\mathbb{E}(X \mid Y)]=\sigma^{2}$, i.e. no variance reduction may be achieved for this specific choice of conditioning variable Y.

Example 4.7. Let $Y \sim \operatorname{Exp}(1)$ and $(S \mid Y) \sim \mathcal{N}(Y, 4)$ be two random variables. We want to estimate the probability $\mathbb{P}(S>1)$. For $y>0$, we calculate that:

$$
\mathbb{P}(S>1 \mid Y=y)=\mathbb{P}\left(\left.\frac{S-y}{2}>\frac{1-y}{2} \right\rvert\, Y=y\right)=1-\Phi\left(\frac{1-y}{2}\right) .
$$

According to the law of iterated expectations, we infer that:

$$
\mathbb{P}(S>1)=\mathbb{E}\left(\mathbb{1}_{\{S>1\}}\right)=\mathbb{E}\left[\mathbb{E}\left(\mathbb{1}_{\{S>1\}} \mid Y\right)\right]=\mathbb{E}[\mathbb{P}(S>1 \mid Y)]=\mathbb{E}\left[1-\Phi\left(\frac{1-Y}{2}\right)\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=$ runif(n$)$
$\mathrm{Y}=-\log (\mathrm{U})$
$\mathrm{U}=$ runif($\mathrm{n} / 2$)
$\mathrm{D}=-2 * \log (\mathrm{U})$
$\mathrm{V}=$ runif ($\mathrm{n} / 2$)
Theta $=2 *$ pi $* V$
$Z=\operatorname{sqrt}(D) * c(\cos ($ Theta), $\sin ($ Theta) $)$
$S=2 * Z+Y$
$X=S>1$
$I=\operatorname{mean}(X)$

```
print(I)
## [1] 0.49067
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.249913
W = 1 - pnorm((1 - Y)/2)
I = mean(W)
print(I)
## [1] 0.4905546
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.02691248
100 * (VarX - VarW)/VarX
## [1] 89.23126
```

We will then use Y as a control variable with $\mathbb{E}(Y)=1$.
$m u Y=1$
$\operatorname{Var} Y=\operatorname{var}(\mathrm{Y})$
$\operatorname{Cov}=\operatorname{cov}(\mathrm{W}, \mathrm{Y})$
$c=-\operatorname{Cov} / \operatorname{Var} Y$
$\mathrm{W}=\mathrm{W}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
I $=\operatorname{mean}(W)$
print(I)
\#\# [1] 0.4900535
VarW $=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print (VarW)
\#\# [1] 0.001347862
100 * (VarX - VarW)/VarX
\#\# [1] 99.46067

Example 4.8. We want to approximate the value of the constant π. Consider two independent random variables $U, V \sim \operatorname{Unif}[0,1]$. Then, we know that:

$$
\pi=4 \mathbb{P}\left(U^{2}+V^{2} \leqslant 1\right)=\mathbb{E}\left(4 \cdot \mathbb{1}_{\left\{U^{2}+V^{2} \leqslant 1\right\}}\right)
$$

For $u \in[0,1]$, we calculate that:

$$
\mathbb{P}\left(U^{2}+V^{2} \leqslant 1 \mid U=u\right)=\mathbb{P}\left(V \leqslant \sqrt{1-u^{2}} \mid U=u\right)=\mathbb{P}\left(V \leqslant \sqrt{1-u^{2}}\right)=\sqrt{1-u^{2}}
$$

According to the law of iterated expectations, we infer that:

$$
\pi=\mathbb{E}\left[\mathbb{E}\left(4 \cdot \mathbb{1}_{\left\{U^{2}+V^{2} \leqslant 1\right\}} \mid U\right)\right]=\mathbb{E}\left[4 \mathbb{P}\left(U^{2}+V^{2} \leqslant 1 \mid U\right)\right]=\mathbb{E}\left(4 \sqrt{1-U^{2}}\right)
$$

$\mathrm{n}=1 \mathrm{e}+06$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$\mathrm{X}=4 *\left(\mathrm{U}^{\wedge} 2+\mathrm{V}^{\wedge} 2<=1\right)$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 3.141728
$\operatorname{Var} X=\operatorname{mean}\left((X-I)^{\wedge} 2\right)$
print(VarX)
\#\# [1] 2.696457
$\mathrm{W}=4 * \operatorname{sqrt}\left(1-\mathrm{U}^{\wedge} 2\right)$
I = mean(W)
print(I)
\#\# [1] 3.141884
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print (VarW)
\#\# [1] 0.7960046
100 * (VarX - VarW)/VarX
\#\# [1] 70.47961
We will then use $Y=U$ as a control variable with $\mathbb{E}(Y)=0.5$.
$\mathrm{Y}=\mathrm{U}$
$\mathrm{muY}=0.5$
$\operatorname{Var} Y=\operatorname{var}(Y)$
$\operatorname{Cov}=\operatorname{cov}(\mathrm{W}, \mathrm{Y})$
$c=-\operatorname{Cov} / \operatorname{Var} Y$
$\mathrm{W}=\mathrm{W}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
I $=$ mean (W)
print(I)
\#\# [1] 3.141869

```
VarW = mean((W - I) ^2)
print(VarW)
## [1] 0.1205411
100 * (VarX - VarW)/VarX
## [1] 95.52965
```

Example 4.9. Let $R \sim \operatorname{Exp}(1)$ and $S \sim \operatorname{Exp}(0.5)$ be two independent random variables. We want to estimate the probability $\mathbb{P}(R+S>4)$. For $s>0$, we calculate that:

$$
\mathbb{P}(R+S>4 \mid S=s)=\mathbb{P}(R>4-s \mid S=s)=\mathbb{P}(R>4-s)=\left\{\begin{array}{cc}
e^{-(4-s)}, & s \leqslant 4 \\
1, & s>4
\end{array}\right.
$$

According to the law of iterated expectations, we infer that:

$$
\mathbb{P}(R+S>4)=\mathbb{E}\left(\mathbb{1}_{\{R+S>4\}}\right)=\mathbb{E}\left[\mathbb{E}\left(\mathbb{1}_{\{R+S>4\}} \mid S\right)\right]=\mathbb{E}[\mathbb{P}(R+S>4 \mid S)]=\mathbb{E}\left[\min \left\{e^{-(4-S)}, 1\right\}\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$R=-\log (U)$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$
$S=-2 * \log (V)$
$X=R+S>4$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.253
$\operatorname{Var} \mathrm{X}=\operatorname{mean}\left((\mathrm{X}-\mathrm{I})^{\wedge} 2\right)$
print (VarX)
\#\# [1] 0.188991
$\mathrm{W}=\operatorname{pmin}(\exp (-(4-S)), 1)$
I = mean (W)
print(I)
\#\# [1] 0.2518087
$\operatorname{VarW}=\operatorname{mean}((W-I) \wedge 2)$
print (VarW)
\#\# [1] 0.11645
100 * (VarX - VarW)/VarX
\#\# [1] 38.38331

We will then use $Y=S$ as a control variable with $\mathbb{E}(Y)=2$.

```
Y = S
muY = 2
VarY = var(Y)
Cov = cov(W, Y)
c = -Cov/VarY
W = W + c * (Y - muY)
I = mean(W)
print(I)
## [1] 0.2523751
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.02201785
100 * (VarX - VarW)/VarX
## [1] 88.34979
```

Alternatively, we calculate that $\mathbb{P}(R+S>4)=\mathbb{E}[\mathbb{P}(R+S>4 \mid R)]=\mathbb{E}\left[\min \left\{e^{-(4-R) / 2}, 1\right\}\right]$.
$\mathrm{W}=\operatorname{pmin}(\exp (-(4-R) / 2), 1)$
I = mean(W)
print(I)
\#\# [1] 0.2530393
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print(VarW)
\#\# [1] 0.02831303
100 * (VarX - VarW)/VarX
\#\# [1] 85.01885

We will then use $Y=R$ as a control variable with $\mathbb{E}(Y)=1$.

```
Y = R
```

muY $=1$
$\operatorname{Var} Y=\operatorname{var}(\mathrm{Y})$
$\operatorname{Cov}=\operatorname{cov}(\mathrm{W}, \mathrm{Y})$
c = -Cov/VarY
$\mathrm{W}=\mathrm{W}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
$\mathrm{I}=\operatorname{mean}(\mathrm{W})$
print(I)
\#\# [1] 0.2525319

```
VarW = mean((W - I) ^2)
print(VarW)
## [1] 0.002096755
100 * (VarX - VarW)/VarX
```

\#\# [1] 98.89055
Example 4.10. Let $R, S \sim \operatorname{Bin}(k, p)$ be two independent random variables. We want to estimate the expected value $\mathbb{E}\left(e^{R S}\right)$. For $r \in\{0,1, \ldots, k\}$, we calculate that:

$$
\begin{aligned}
\mathbb{E}\left(e^{R S} \mid R=r\right) & =\mathbb{E}\left(e^{r S} \mid R=r\right)=\mathbb{E}\left(e^{r S}\right)=\sum_{s=0}^{k}\binom{k}{s} p^{s}(1-p)^{k-s} e^{r s} \\
& =\sum_{s=0}^{k}\binom{k}{s}\left(p e^{r}\right)^{s}(1-p)^{k-s}=\left(p e^{r}+1-p\right)^{k}
\end{aligned}
$$

According to the law of iterated expectations, we infer that:

$$
\mathbb{E}\left(e^{R S}\right)=\mathbb{E}\left[\mathbb{E}\left(e^{R S} \mid R\right)\right]=\mathbb{E}\left[\left(p e^{R}+1-p\right)^{k}\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{k}=2$
$\mathrm{p}=0.1$
$\mathrm{U}=\operatorname{matrix}(\operatorname{runif}(\mathrm{n} * \mathrm{k}), \mathrm{n})$
$R=\operatorname{rowSums}(U<p)$
$\mathrm{V}=\operatorname{matrix}(\operatorname{runif}(\mathrm{n} * \mathrm{k}), \mathrm{n})$
S $=\operatorname{rowSums}(\mathrm{V}<\mathrm{p})$
$X=\exp (R * S)$
$I=\operatorname{mean}(X)$
print(I)
\#\# [1] 1.081712
$\operatorname{Var} X=\operatorname{mean}\left((X-I)^{\wedge} 2\right)$
print(VarX)
\#\# [1] 0.5129571
$\mathrm{W}=(\mathrm{p} * \exp (\mathrm{R})+1-\mathrm{p})^{\wedge} \mathrm{k}$
$\mathrm{I}=\operatorname{mean}(\mathrm{W})$
print(I)
\#\# [1] 1.084086
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print (VarW)
\#\# [1] 0.04611129

```
100 * (VarX - VarW)/VarX
```

\#\# [1] 91.01069
We will then use $Y=R$ as a control variable with $\mathbb{E}(Y)=k p$.
$Y=R$
$m u Y=k * p$
$\operatorname{Var} Y=\operatorname{var}(Y)$
$\operatorname{Cov}=\operatorname{cov}(\mathrm{W}, \mathrm{Y})$
$c=-C o v / \operatorname{Var} Y$
$\mathrm{W}=\mathrm{W}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
I = mean(W)
print(I)
\#\# [1] 1.083844
VarW $=$ mean $\left((W-I)^{\wedge} 2\right)$
print (VarW)
\#\# [1] 0.007070317
100 * (VarX - VarW)/VarX
\#\# [1] 98.62166
Lemma 4.1. Let $S \sim \operatorname{Gamma}(k, \lambda)$ be a random variable with $k \in \mathbb{N}$. For $s>0$, we know that:

$$
F_{S}(s)=1-\sum_{j=0}^{k-1} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!}
$$

Proof. Let $\{N(t): t \geqslant 0\}$ be a Poisson process with rate λ and arrival times S_{1}, S_{2}, \ldots. Then, we know that $S_{k} \sim \operatorname{Gamma}(k, \lambda)$. We observe that:

$$
F_{S_{k}}(s)=\mathbb{P}\left(S_{k} \leqslant s\right)=\mathbb{P}[N(s) \geqslant k]=1-\mathbb{P}[N(s) \leqslant k-1]=1-\sum_{j=0}^{k-1} \mathbb{P}[N(s)=j]=1-\sum_{j=0}^{k-1} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!}
$$

Example 4.11. Let $K \sim \operatorname{Poisson}(\lambda)$ be a random variable. Consider a sequence of independent random variables $R_{1}, R_{2}, \cdots \sim \operatorname{Exp}(\mu)$ which is independent of K. We want to estimate the probability $\mathbb{P}\left(S_{K}>s\right)$, where:

$$
S_{K}=\sum_{\ell=1}^{K} R_{\ell}
$$

For $k \in \mathbb{N}$, we observe that $S_{k} \sim \operatorname{Gamma}(k, \mu)$. Therefore, we calculate that:

$$
\mathbb{P}\left(S_{K}>s \mid K=k\right)=\mathbb{P}\left(S_{k}>s \mid K=k\right)=\mathbb{P}\left(S_{k}>s\right)=\sum_{j=0}^{k-1} e^{-\mu s} \frac{(\mu s)^{j}}{j!}
$$

According to the law of iterated expectations, we infer that:

$$
\mathbb{P}\left(S_{K}>s\right)=\mathbb{E}\left(\mathbb{1}_{\left\{S_{K}>s\right\}}\right)=\mathbb{E}\left[\mathbb{E}\left(\mathbb{1}_{\left\{S_{K}>s\right\}} \mid K\right)\right]=\mathbb{E}\left[\mathbb{P}\left(S_{K}>s \mid K\right)\right]=\mathbb{E}\left[\sum_{j=0}^{K-1} e^{-\mu s} \frac{(\mu s)^{j}}{j!}\right]
$$

$\mathrm{n}=1 \mathrm{e}+05$
lambda $=4$
$\mathrm{mu}=6$
$\mathrm{s}=1$
$\mathrm{K}=$ numeric (n)
S = numeric (n)
for (i in 1:n) \{
$\mathrm{U}=\operatorname{runif}(1)$
pmf $=\exp (-1$ ambda)
cdf = pmf
while (U > cdf) \{ $\mathrm{K}[\mathrm{i}]=\mathrm{K}[\mathrm{i}]+1$
pmf = pmf * lambda/K[i]
$c d f=c d f+p m f$
\}
$\mathrm{V}=\operatorname{runif}(\mathrm{K}[i])$
$R=-\log (V) / m u$
S[i] $=\operatorname{sum}(R)$
\}
$\mathrm{X}=\mathrm{S}>\mathrm{s}$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.21204
$\operatorname{Var} \mathrm{X}=\operatorname{mean}\left((\mathrm{X}-\mathrm{I})^{\wedge} 2\right)$
print(VarX)
\#\# [1] 0.167079
$\mathrm{W}=$ numeric (n)
for (i in 1:n) \{
if (K[i] > 0) \{
pmf $=\exp (-m u * s)$
for (j in 0:(K[i] - 1)) \{
$\mathrm{W}[\mathrm{i}]=\mathrm{W}[\mathrm{i}]+\mathrm{pmf}$
$\mathrm{pmf}=\mathrm{pmf} * \mathrm{mu} * \mathrm{~s} /(\mathrm{j}+1)$
\}
\}
\}

```
I = mean(W)
print(I)
## [1] 0.2116497
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.04840946
100 * (VarX - VarW)/VarX
## [1] 71.02601
```

We will then use $Y=K$ as a control variable with $\mathbb{E}(Y)=\lambda$.
$\mathrm{Y}=\mathrm{K}$
muY = lambda
$\operatorname{Var} Y=\operatorname{var}(Y)$
Cov $=\operatorname{cov}(W, Y)$
c = -Cov/VarY
$\mathrm{W}=\mathrm{W}+\mathrm{c} *(\mathrm{Y}-\mathrm{muY})$
$\mathrm{I}=$ mean (W)
print(I)
\#\# [1] 0.2125292
VarW $=$ mean $\left((W-I)^{\wedge} 2\right)$
print(VarW)
\#\# [1] 0.003967733
100 * (VarX - VarW)/VarX
\#\# [1] 97.62524
Alternatively, we define $M=\min \left\{m \in \mathbb{N}: S_{m}>s\right\}$. For $m \in \mathbb{N}$, we calculate that:

$$
\begin{aligned}
\mathbb{P}\left(S_{K}>s \mid M=m\right) & =\mathbb{P}(K \geqslant M \mid M=m)=\mathbb{P}(K \geqslant m \mid M=m) \\
& =1-\mathbb{P}(K \leqslant m-1)=1-\sum_{j=0}^{m-1} e^{-\lambda} \frac{\lambda^{j}}{j!} .
\end{aligned}
$$

According to the law of iterated expectations, we infer that:

$$
\mathbb{P}\left(S_{K}>s\right)=\mathbb{E}\left(\mathbb{1}_{\left\{S_{K}>s\right\}}\right)=\mathbb{E}\left[\mathbb{E}\left(\mathbb{1}_{\left\{S_{K}>s\right\}} \mid M\right)\right]=\mathbb{E}\left[\mathbb{P}\left(S_{K}>s \mid M\right)\right]=\mathbb{E}\left(1-\sum_{j=0}^{M-1} e^{-\lambda} \frac{\lambda^{j}}{j!}\right)
$$

$\mathrm{n}=1 \mathrm{e}+05$
lambda = 4
$\mathrm{mu}=6$

```
s = 1
S = numeric(n)
M = numeric(n)
W = numeric(n)
for (i in 1:n) {
    while (S[i] <= s) {
        U = runif(1)
        R = -log(U)/mu
        S[i] = S[i] + R
        M[i] = M[i] + 1
    }
    W[i] = 1
    pmf = exp(-lambda)
    for (j in 0:(M[i] - 1)) {
        W[i] = W[i] - pmf
        pmf = pmf * lambda/(j + 1)
    }
}
I = mean(W)
print(I)
## [1] 0.2129754
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.05250765
100 * (VarX - VarW)/VarX
## [1] 68.57317
```

We will then use $Y=S_{M}-M / \mu$ as a control variable. For $m \in \mathbb{N}$, we calculate that:

$$
\mathbb{E}(Y \mid M=m)=\mathbb{E}\left(\left.S_{m}-\frac{m}{\mu} \right\rvert\, M=m\right)=\mathbb{E}\left(S_{m}\right)-\frac{m}{\mu}=0 .
$$

According to the law of iterated expectations, we infer that $\mathbb{E}(Y)=\mathbb{E}[\mathbb{E}(Y \mid M)]=0$.

```
Y = S - M/mu
muY = 0
VarY = var(Y)
Cov = cov(W, Y)
c = -Cov/VarY
W = W + c * (Y - muY)
I = mean(W)
print(I)
```

\#\# [1] 0.2126705

```
VarW = mean((W - I) ^2)
print(VarW)
## [1] 0.01807493
100 * (VarX - VarW)/VarX
## [1] 89.18181
```

Example 4.12. Consider a $M / M / 1 / k$ queuing system, where the arrival process $\{N(t): t \geqslant 0\}$ is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. We want to estimate the average number X of lost customers up to time T^{*}. We let S be the total time that the system is full up to time point T^{*}. Then, we observe that $X \stackrel{d}{=} N(S)$. According to the law of iterated expectations, we infer that:

$$
\mathbb{E}(X)=\mathbb{E}[N(S)]=\mathbb{E}[\mathbb{E}(N(S) \mid S)]=\mathbb{E}(\lambda S)
$$

$\mathrm{n}=1000$
lambda $=4$
$\mathrm{mu}=6$
$\mathrm{k}=10$
Tstar $=100$
X = numeric(n)
$S=$ numeric (n)
for (i in 1:n) \{
$\mathrm{Q}=0$
$\mathrm{U}=\mathrm{runif}(1)$
$A=-\log (U) / l a m b d a$
$\mathrm{t}=\mathrm{A}$
while (t < Tstar) \{
if ($\mathrm{t}=\mathrm{=}$ A) \{
if $(Q<k)\{$
$Q=Q+1$
if ($Q==k$) \{
$S[i]=S[i]-t$
\}
\} else \{
$X[i]=X[i]+1$
\}
$\mathrm{U}=$ runif(1)
$\mathrm{A}=\mathrm{t}-\log (\mathrm{U}) / \mathrm{l}$ ambda
if ($Q==1$) \{
$\mathrm{V}=$ runif(1)
$D=t-\log (V) / m u$
\}

```
        } else {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
            } else {
                    D = Inf
            }
            if (Q == k - 1) {
                    S[i] = S[i] + t
            }
        }
        t = min(A, D)
    }
    if (Q == k) {
        S[i] = S[i] + Tstar
    }
}
I = mean(X)
print(I)
## [1] 2.221
VarX = mean((X - I) ^2)
print(VarX)
## [1] 9.140159
W = lambda * S
I = mean(W)
print(I)
## [1] 2.231415
VarW = mean((W - I)^2)
print(VarW)
## [1] 7.261257
100 * (VarX - VarW)/VarX
## [1] 20.55656
```

Example 4.13. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ and the service times follow the $\operatorname{Exp}(\mu)$ distribution. We want to estimate the expected total sojourn time of the first N^{*} customers in the system. Let S_{j} be the sojourn time of the j-th customer, R_{j} be the service time of the j-th customer and M_{j} be the number of customers present in the system at the arrival moment of the j-th customer.

Then, we define:

$$
X=\sum_{j=1}^{N^{*}} S_{j}, \quad Y=\sum_{j=1}^{N^{*}} R_{j}, \quad K=\sum_{j=1}^{N^{*}} M_{j}
$$

We will first use Y as a control variable with $\mathbb{E}(Y)=N^{*} / \mu$.

```
n = 10000
lambda = 4
mu = 6
Nstar = 10
X = numeric(n)
Y = numeric(n)
K = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/lambda
    D = Inf
    N = 0
    arrivals = numeric(0)
    while (N < Nstar || Q > 0) {
        t = min(A, D)
        if (t == A) {
            K[i] = K[i] + Q
            Q = Q + 1
            N = N + 1
            if (N < Nstar) {
                    U = runif(1)
                    A = t - log(U)/lambda
                } else {
                    A = Inf
                }
                if (Q == 1) {
                    V = runif(1)
                    D = t - log(V)/mu
                    Y[i] = Y[i] + D - t
                }
                arrivals = c(arrivals, t)
        } else {
            Q = Q - 1
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
                    Y[i] = Y[i] + D - t
```

```
        } else {
            D = Inf
        }
        X[i] = X[i] + t - arrivals[1]
        arrivals = arrivals[-1]
        }
    }
}
I = mean(X)
print(I)
## [1] 3.204967
VarX = mean((X - I) ^2)
print(VarX)
## [1] 4.15866
muY = Nstar/mu
VarY = var(Y)
Cov = cov(X, Y)
c = -Cov/VarY
W = X + c * (Y - muY)
I = mean(W)
print(I)
## [1] 3.212926
VarW = mean((W - I)^2)
print(VarW)
## [1] 1.587515
rho = Cov/sqrt(VarX * VarY)
print(rho)
## [1] 0.7863362
100 * rho^2
## [1] 61.83246
```

According to the law of iterated expectations, we alternatively calculate that:

$$
\mathbb{E}(X)=\sum_{j=1}^{N^{*}} \mathbb{E}\left(S_{j}\right)=\sum_{j=1}^{N^{*}} \mathbb{E}\left[\mathbb{E}\left(S_{j} \mid M_{j}\right)\right]=\sum_{j=1}^{N^{*}} \mathbb{E}\left(\frac{M_{j}+1}{\mu}\right)=\mathbb{E}\left(\frac{1}{\mu} \sum_{j=1}^{N^{*}} M_{j}+\frac{N^{*}}{\mu}\right)=\mathbb{E}\left(\frac{K+N^{*}}{\mu}\right)
$$

$\mathrm{W}=(\mathrm{K}+\mathrm{Nstar}) / \mathrm{mu}$
I = mean (W)

```
print(I)
## [1] 3.2149
VarW = mean((W - I)^2)
print(VarW)
## [1] 1.452951
100 * (VarX - VarW)/VarX
## [1] 65.06203
```


Importance Sampling

Let R, Y be random variables with PDFs $f(x), g(x)$ and supports S_{f}, S_{g} respectively. Consider a function $h: S_{f} \rightarrow \mathbb{R}$. Suppose it holds that either $S_{g} \subseteq S_{f}$ and $h(x)=0$ for $x \in S_{f} \backslash S_{g}$ or $S_{f} \subseteq S_{g}$. We want to estimate the expected value $\mathbb{E}[h(R)]$. If we let $\phi(x)=\frac{h(x) f(x)}{g(x)}$, then we observe that:

$$
\mathbb{E}[h(R)]=\int_{S_{f}} h(x) f(x) d x=\int_{S_{g}} \frac{h(x) f(x)}{g(x)} g(x) d x=\int_{S_{g}} \phi(x) g(x) d x=\mathbb{E}[\phi(Y)] .
$$

The aim of the importance sampling method is to select a random variable Y such that $f(x) \gg g(x)$ if and only if $|h(x)| \approx 0$ and $f(x) \ll g(x)$ if and only if $|h(x)| \gg 0$. In this way, we manage to minimize the variance of the random variable $\phi(Y)$.

Example 4.14. Let $Z \sim \mathcal{N}(0,1)$ be a random variable. We want to estimate the probability $\mathbb{P}(Z>3)$. We will use $g(x)=e^{-(x-3)}$ as an importance variable for $x>3$. Then, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=\frac{1}{e^{-(x-3)}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}=\frac{e^{-x^{2} / 2+x-3}}{\sqrt{2 \pi}} .
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$
$\mathrm{D}=-2 * \log (\mathrm{U})$
$\mathrm{V}=$ runif($\mathrm{n} / 2$)
Theta $=2 *$ pi $* V$
$Z=\operatorname{sqrt}(D) * c(\cos ($ Theta $), \sin ($ Theta $))$
$\mathrm{X}=\mathrm{Z}>3$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.0014
$\operatorname{Var} X=\operatorname{mean}\left((X-I)^{\wedge} 2\right)$
print(VarX)
\#\# [1] 0.00139804

```
U = runif(n)
Y = 3-1og(U)
W = exp(-Y^2/2 + Y - 3)/sqrt(2 * pi)
I = mean(W)
print(I)
## [1] 0.001350963
VarW = mean((W - I)^2)
print(VarW)
## [1] 1.850184e-06
100 * (VarX - VarW)/VarX
## [1] 99.86766
```

Example 4.15. Let $S \sim \operatorname{Gamma}(3,1)$ be a random variable. We want to estimate the expected value $\mathbb{E}(\max \{X-8,0\})$. We will use $g(x)=e^{-(x-8)}$ as an importance variable for $x>8$. Then, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=\frac{x-8}{e^{-(x-8)}} \frac{1}{\Gamma(3)} x^{2} e^{-x}=\frac{x^{2}(x-8)}{2 e^{8}} .
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{matrix}($ runif $(3 * \mathrm{n}), \mathrm{n})$
$R=-\log (U)$
S = rowSums (R)
$X=\operatorname{pmax}(S-8,0)$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.01686379
$\operatorname{Var} X=\operatorname{mean}\left((X-I)^{\wedge} 2\right)$
print(VarX)
\#\# [1] 0.04255399
$\mathrm{V}=$ runif(n)
$\mathrm{Y}=8-\log (\mathrm{V})$
$\mathrm{W}=\mathrm{Y}^{\wedge} 2 *(\mathrm{Y}-8) /(2 * \exp (8))$
$\mathrm{I}=\operatorname{mean}(\mathrm{W})$
print(I)
\#\# [1] 0.01721288
VarW $=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print(VarW)
\#\# [1] 0.0006926254

```
100 * (VarX - VarW)/VarX
```

\#\# [1] 98.37236
Example 4.16. Let $U \sim \operatorname{Unif}[0,1]$ be a random variable. We want to estimate the expected value $\mathbb{E}\left[\left(1-U^{2}\right) e^{U}\right]$. We will first use $Y \sim \operatorname{Beta}(2,1)$ as an importance variable. For $x \in[0,1]$, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=\frac{\left(1-x^{2}\right) e^{x}}{2 x}
$$

```
n = 1e+05
U = runif(n)
X = (1 - U^2) * exp(U)
I = mean(X)
print(I)
## [1] 0.9993458
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.09743515
V = runif(n)
Y = V^(1/2)
W = (1 - Y^2) * exp(Y)/(2 * Y)
I = mean(W)
print(I)
## [1] 1.007208
VarW = mean((W - I) ^2)
print(VarW)
## [1] 3.706268
100 * (VarW - VarX)/VarX
## [1] 3703.831
```

We observe that the variance of the estimator of $\mathbb{E}\left[\left(1-U^{2}\right) e^{U}\right]$ is hugely increased for this specific choice of importance variable. For $x \in[0,1]$, we calculate that $h^{\prime}(x)=\left(1-2 x-x^{2}\right) e^{x}$ and $h^{\prime \prime}(x)=-\left(x^{2}+4 x+1\right) e^{x}<0$. In other words, the function h is maximized at $x^{*}=\sqrt{2}-1$. We know that the PDF of the $\operatorname{Beta}(a, b)$ distribution for $a, b>1$ is maximized at:

$$
x^{*}=\frac{a-1}{a+b-2} .
$$

If we select $a=\sqrt{2}$ and $b=3-\sqrt{2}$, then the functions $h(x)$ and $g(x)$ are maximized at the same point. We will then use $Y \sim \operatorname{Beta}(\sqrt{2}, 3-\sqrt{2})$ as an importance variable. For $x \in[0,1]$, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=\left(1-x^{2}\right) e^{x} \frac{\Gamma(\sqrt{2}) \Gamma(3-\sqrt{2})}{2 x^{\sqrt{2}-1}(1-x)^{2-\sqrt{2}}} .
$$

```
M = dbeta(sqrt(2) - 1, sqrt(2), 3 - sqrt(2))
Y = numeric(n)
for (i in 1:n) {
    Y[i] = runif(1)
    U = runif(1)
    V = M * U
    while (dbeta(Y[i], sqrt(2), 3 - sqrt(2)) < V) {
        Y[i] = runif(1)
        U = runif(1)
        V = M * U
    }
}
W = (1 - Y^2) * exp(Y)/dbeta(Y, sqrt(2), 3 - sqrt(2))
I = mean(W)
print(I)
## [1] 1.000158
VarW = mean((W - I) ^2)
print(VarW)
## [1] 0.05403956
100 * (VarX - VarW)/VarX
## [1] 44.53792
curve(dbeta(x, 2, 1), col = "red", lwd = 2, xlab = NA, ylab = NA, xlim = c(0,
    1))
curve(dbeta(x, sqrt(2), 3 - sqrt(2)), add = TRUE, col = "blue", lwd = 2)
curve((1 - x^2) * exp(x), add = TRUE, col = "purple", lwd = 2)
legend("topleft", c(expression("Beta" ~ (2 ~ "," ~ 1)), expression("Beta" ~
    (sqrt(2) ~ "," ~ 3 - sqrt(2))), expression((1 - x^2) %.% e^x)), col = c("red",
    "blue", "purple"), lty = c(1, 1, 1), lwd = c(2, 2, 2), cex = 0.75)
```


Note 4.3. Let $X \sim t_{\nu}$ be a random variable. For $x \in \mathbb{R}$, we know that:

$$
f_{X}(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi \Gamma\left(\frac{\nu}{2}\right)}}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} .
$$

For $k \in \mathbb{N}$, we know that:

$$
\Gamma\left(k+\frac{1}{2}\right)=\frac{(2 k)!}{4^{k} k!} \sqrt{\pi}
$$

For $\nu=1$, we know that $X \sim t_{1} \equiv \operatorname{Cauchy}(0,1)$. Then, we infer that:

$$
f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad F_{X}(x)=\frac{1}{\pi} \arctan x+\frac{1}{2}, \quad F_{X}^{-1}(u)=\tan \left[\pi\left(u-\frac{1}{2}\right)\right] .
$$

Example 4.17. Let $S \sim t_{3}$ be a random variable. We want to estimate the expected value $\mathbb{E}(|S|)$. We will first use $Y \sim \operatorname{Cauchy}(0,1)$ as an importance variable. For $x \in \mathbb{R}$, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=|x| \pi\left(1+x^{2}\right) \frac{1}{\sqrt{3 \pi} \sqrt{\pi} / 2}\left(1+\frac{x^{2}}{3}\right)^{-2}=\frac{2|x|\left(1+x^{2}\right)}{\sqrt{3}}\left(1+\frac{x^{2}}{3}\right)^{-2} .
$$

```
n = 1e+05
M = (3/2)^(3/2) * 2/sqrt(pi) * exp(-0.5)
Y = numeric(n)
for (i in 1:n) {
    W = runif(1)
    Y[i] = -3 * log(W)
    U = runif(1)
    V = M * dexp(Y[i], 1/3) * U
    while (dchisq(Y[i], 3) < V) {
        W = runif(1)
        Y[i] = -3* log(W)
        U = runif(1)
        V = M * dexp(Y[i], 1/3) * U
    }
```

```
}
U = runif(n/2)
D = -2 * log(U)
V = runif(n/2)
Theta = 2 * pi * V
Z = sqrt(D) * c(cos(Theta), sin(Theta))
S = sqrt(3/Y) * Z
X = abs(S)
I = mean(X)
print(I)
## [1] 1.099443
VarX = mean((X - I) ^2)
print(VarX)
## [1] 1.727892
U = runif(n)
Y = tan(pi * (U - 0.5))
W = 2 * abs(Y) * (1 + Y^2)/sqrt(3) * (1 + Y^2/3)^(-2)
I = mean(W)
print(I)
## [1] 1.102958
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.5165322
100 * (VarX - VarW)/VarX
## [1] 70.10622
```

We will then use $Y \sim \mathcal{N}(0,1)$ as an importance variable. For $x \in \mathbb{R}$, we calculate that:

$$
\phi(x)=\frac{h(x) f(x)}{g(x)}=|x| \sqrt{2 \pi} e^{x^{2} / 2} \frac{1}{\sqrt{3 \pi} \sqrt{\pi} / 2}\left(1+\frac{x^{2}}{3}\right)^{-2}=\frac{4|x| e^{x^{2} / 2}}{\sqrt{6 \pi}}\left(1+\frac{x^{2}}{3}\right)^{-2}
$$

$\mathrm{U}=\operatorname{runif}(\mathrm{n} / 2)$
$D=-2 * \log (U)$
$\mathrm{V}=$ runif($\mathrm{n} / 2$)
Theta $=2 * \mathrm{pi} * \mathrm{~V}$
$\mathrm{Y}=\operatorname{sqrt}(\mathrm{D}) * c(\cos ($ Theta $), \sin ($ Theta $))$
$\mathrm{W}=4 * \operatorname{abs}(\mathrm{Y}) * \exp \left(\mathrm{Y}^{\wedge} 2 / 2\right) / \operatorname{sqrt}(6 * \mathrm{pi}) *\left(1+\mathrm{Y}^{\wedge} 2 / 3\right)^{\wedge}(-2)$
$\mathrm{I}=$ mean(W)
print(I)
\#\# [1] 1.010371

```
VarW = mean((W - I) ^2)
print(VarW)
```

\#\# [1] 304.6457
100 * (VarW - VarX)/VarX
\#\# [1] 17531.06

We observe that the variance of the estimator of $\mathbb{E}(|S|)$ is hugely increased for this specific choice of importance variable. As far as the function $h(x)=|x|$ is concerned, we observe that $h(x) \approx 0$ for $x \approx 0$ and $h(x) \gg 0$ for $|x| \gg 0$. If $Y \sim \operatorname{Cauchy}(0,1)$, then $f(x) \gg g(x)$ for $x \approx 0$ and $f(x) \ll g(x)$ for $|x| \gg 0$, i.e. this choice of importance variable is suitable. If $Y \sim \mathcal{N}(0,1)$, then $f(x) \ll g(x)$ for $x \approx 0$ and $f(x) \gg g(x)$ for $|x| \gg 0$, i.e. the importance sampling method leads to an estimator with much higher variance than the original.

```
curve(dnorm(x), col = "red", lwd = 2, xlab = NA, ylab = NA, xlim = c(-5, 5))
curve(dt(x, 3), add = TRUE, col = "blue", lwd = 2)
curve(dcauchy(x), add = TRUE, col = "purple", lwd = 2)
legend("topright", c(expression(Normal(0, 1)), expression(t[3]), expression(Cauchy(0,
    1))), col = c("red", "blue", "purple"), lty = c(1, 1, 1), lwd = c(2, 2,
    2), cex = 0.75)
```


Example 4.18. Let $S \sim \operatorname{Exp}(2)$ and $R \sim \operatorname{Exp}(1)$ be independent random variables. We want to estimate the expected value $\mathbb{E}(\max \{S+R-7,0\})$. We will use $g(x, y)=2 e^{-2 x} e^{-(y-\max \{7-x, 0\})}$ as an importance density for $x>0$ and $y>\max \{7-x, 0\}$. Then, we calculate that:

$$
\phi(x, y)=\frac{h(x, y) f(x, y)}{g(x, y)}=(x+y-7) \frac{2 e^{-2 x} e^{-y}}{2 e^{-2 x} e^{-(y-\max \{7-x, 0\})}}=\frac{x+y-7}{e^{\max \{7-x, 0\}}}
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
$\mathrm{S}=-\log (\mathrm{U}) / 2$
$\mathrm{V}=\operatorname{runif}(\mathrm{n})$

```
R=-log(V)
X = pmax(S + R - 7, 0)
I = mean(X)
print(I)
## [1] 0.001809774
VarX = mean((X - I)^2)
print(VarX)
## [1] 0.003704638
U = runif(n)
S = -log(U)/2
V = runif(n)
Y = pmax(7 - S, 0) - log(V)
W = (S + Y - 7)/exp (pmax (7 - S, 0))
I = mean(W)
print(I)
## [1] 0.001837356
VarW = mean((W - I)^2)
print(VarW)
## [1] 2.769405e-05
100 * (VarX - VarW)/VarX
## [1] 99.25245
```

Example 4.19. Let $R_{1}, R_{2}, \cdots \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a sequence of independent random variables with $\mu<0$ and $A, B>0$. We define the random variables:

$$
S_{m}=\sum_{j=1}^{m} R_{j}, \quad M=\min \left\{m \in \mathbb{N}: S_{m}<-A \text { or } S_{m}>B\right\}
$$

We want to estimate the probability $\mathbb{P}\left(S_{M}>B\right)$. We will use $Y_{1}, Y_{2}, \cdots \sim \mathcal{N}\left(-\mu, \sigma^{2}\right)$ as importance variables. Then, we infer that:

$$
\begin{aligned}
\phi(x) & =\frac{h(x) f(x)}{g(x)}=\mathbb{1}_{\left\{S_{M}>B\right\}} \prod_{j=1}^{M} \frac{f_{R_{j}}\left(x_{j}\right)}{f_{Y_{j}}\left(x_{j}\right)}=\mathbb{1}_{\left\{S_{M}>B\right\}} \prod_{j=1}^{M} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{j}-\mu\right)^{2}\right\} \exp \left\{\frac{1}{2 \sigma^{2}}\left(x_{j}+\mu\right)^{2}\right\} \\
& =\mathbb{1}_{\left\{S_{M}>B\right\}} \exp \left\{\sum_{j=1}^{M} 2 \mu x_{j}\right\}=\mathbb{1}_{\left\{S_{M}>B\right\}} \exp \left\{\frac{2 \mu S_{M}}{\sigma^{2}}\right\} .
\end{aligned}
$$

$\mathrm{n}=10000$
$\mathrm{mu}=-3$
sigma $=2$

```
A=6
B = 3
lambda = 1/sigma
M = sqrt(2 * exp(1)/pi)
S = numeric(n)
for (i in 1:n) {
    while (S[i] >= -A && S[i] <= B) {
        W = runif(1)
        Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y - mu), lambda)/2 * U
        while (dnorm(Y, mu, sigma) < V) {
            W = runif(1)
            Y = ifelse(W <= 0.5, mu + log(2 * W)/lambda, mu - log(2 * (1 - W))/lambda)
            U = runif(1)
            V = M * dexp(abs(Y - mu), lambda)/2 * U
        }
        S[i] = S[i] + Y
    }
}
X = S > B
I = mean(X)
print(I)
## [1] 0.0022
VarX = mean((X - I)^2)
print(VarX)
## [1] 0.00219516
S = numeric(n)
for (i in 1:n) {
    while (S[i] >= -A && S[i] <= B) {
        W = runif(1)
        Y = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y + mu), lambda)/2 * U
        while (dnorm(Y, -mu, sigma) < V) {
            W = runif(1)
            Y = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -
                W))/lambda)
            U = runif(1)
            V = M * dexp(abs(Y + mu), lambda)/2 * U
        }
```

```
        S[i] = S[i] + Y
    }
}
W = (S > B) * exp(2 * mu * S/sigma^2)
I = mean(W)
print(I)
## [1] 0.002104925
VarW = mean((W - I)^2)
print(VarW)
## [1] 7.516815e-06
100 * (VarX - VarW)/VarX
## [1] 99.65757
```

Definition 4.1. Let X be a random variable with support S, PDF f and MGF $M(t)=\mathbb{E}\left[e^{t X}\right]$ for $t \in \mathbb{R}$. For $x \in S$, we define the tilted PDF of f as follows:

$$
f_{t}(x)=\frac{e^{t x} f(x)}{M(t)}
$$

Note 4.4. Let $X \sim f$ and $Y \sim f_{t}$ be independent random variables. If $t>0$, then $\mathbb{E}(Y)>\mathbb{E}(X)$. Otherwise, $\mathbb{E}(Y)<\mathbb{E}(X)$.

Example 4.20. Let $R_{1}, \ldots, R_{k} \sim \operatorname{Exp}(1)$ be independent random variables. We define the random variable $S=R_{1}+\cdots+R_{k}$. We want to estimate the probability $\mathbb{P}(S>a)$ with $a>k$. For $t<1$, we know that $M_{j}(t)=\mathbb{E}\left(e^{t R_{j}}\right)=\frac{1}{1-t}$. For $x>0$, we define the following tilted importance densities:

$$
f_{t}^{(j)}(x)=\frac{e^{t x} f_{R_{j}}(x)}{M_{j}(t)}=(1-t) e^{t x} e^{-x}=(1-t) e^{-(1-t) x}
$$

In other words, we are led to the tilted importance variables $Y_{1}, \ldots, Y_{k} \sim \operatorname{Exp}(1-t)$. Then, we infer that:

$$
\begin{aligned}
\phi(x) & =\frac{h(x) f(x)}{g(x)}=\mathbb{1}_{\{S>a\}} \prod_{j=1}^{k} \frac{f_{R_{j}}\left(x_{j}\right)}{f_{t}^{(j)}\left(x_{j}\right)}=\mathbb{1}_{\{S>a\}} \prod_{j=1}^{k} \frac{e^{-x_{j}}}{(1-t) e^{-(1-t) x_{j}}} \\
& =\frac{\mathbb{1}_{\{S>a\}}}{(1-t)^{k}} \exp \left\{-\sum_{j=1}^{k} t x_{j}\right\}=\frac{\mathbb{1}_{\{S>a\}} e^{-t S}}{(1-t)^{k}}
\end{aligned}
$$

A suitable value for the parameter t is given by letting $\mathbb{E}_{t}(S)=a$. Then, we conclude that:

$$
\sum_{j=1}^{k} \frac{1}{1-t}=a \quad \Rightarrow \quad t=1-\frac{k}{a}
$$

$\mathrm{n}=1 \mathrm{e}+05$
$\mathrm{k}=4$
$\mathrm{a}=10$
$\mathrm{U}=\operatorname{matrix}($ runif $(\mathrm{k} * \mathrm{n})$, n$)$
$R=-\log (U)$
S = rowSums(R)
$\mathrm{X}=\mathrm{S}>\mathrm{a}$
$\mathrm{I}=\operatorname{mean}(\mathrm{X})$
print(I)
\#\# [1] 0.00991
$\operatorname{Var} \mathrm{X}=\operatorname{mean}\left((\mathrm{X}-\mathrm{I})^{\wedge} 2\right)$
print (VarX)
\#\# [1] 0.009811792
$\mathrm{t}=1-\mathrm{k} / \mathrm{a}$
print(t)
\#\# [1] 0.6
$\mathrm{V}=\operatorname{matrix}($ runif $(\mathrm{k} * \mathrm{n}), \mathrm{n})$
$Y=-\log (V) /(1-t)$
$\mathrm{S}=$ rowSums (Y)
$\mathrm{W}=(\mathrm{S}>\mathrm{a}) * \exp (-\mathrm{t} * \mathrm{~S}) /(1-\mathrm{t})^{\wedge} \mathrm{k}$
$\mathrm{I}=\operatorname{mean}(\mathrm{W})$
print(I)
\#\# [1] 0.0103581
$\operatorname{VarW}=\operatorname{mean}\left((W-I)^{\wedge} 2\right)$
print(VarW)
\#\# [1] 0.0004474145
100 * (VarX - VarW)/VarX
\#\# [1] 95.44003
Example 4.21. Let $R_{1}, \ldots, R_{k} \sim \operatorname{Bernoulli}(p)$ be independent random variables. we define the random variables $S=R_{1}+\cdots+R_{k}$. We want to estimate the probability $\mathbb{P}(S \geqslant a)$ with $a<k$. For $t \in \mathbb{R}$, we know that $M_{j}(t)=\mathbb{E}\left(e^{t R_{j}}\right)=1-p+p e^{t}$. For $x \in\{0,1\}$, we define the following tilted importance densities:

$$
f_{t}^{(j)}(x)=\frac{e^{t x} f_{R_{j}}(x)}{M_{j}(t)}=\frac{e^{t x} p^{x}(1-p)^{1-x}}{1-p+p e^{t}}=\left(\frac{p e^{t}}{1-p+p e^{t}}\right)^{x}\left(\frac{1-p}{1-p+p e^{t}}\right)^{1-x}
$$

In other words, we are led to the tilted importance variables $Y_{1}, \ldots, Y_{k} \sim \operatorname{Bernoulli}\left(\frac{p e^{t}}{1-p+p e^{t}}\right)$. Then, we infer
that:

$$
\begin{aligned}
& \phi(x)=\frac{h(x) f(x)}{g(x)}=\mathbb{1}_{\{S \geqslant a\}} \prod_{j=1}^{k} \frac{f_{R_{j}}\left(x_{j}\right)}{f_{t}^{(j)}\left(x_{j}\right)}=\mathbb{1}_{\{S \geqslant a\}} \prod_{j=1}^{k} p^{x_{j}}(1-p)^{1-x_{j}} \frac{1-p+p e^{t}}{e^{t x_{j}} p^{x_{j}}(1-p)^{1-x_{j}}} \\
& =\mathbb{1}_{\{S \geqslant a\}}\left(1-p+p e^{t}\right)^{k} \exp \left\{-\sum_{j=1}^{k} t x_{j}\right\}=\mathbb{1}_{\{S \geqslant a\}}\left(1-p+p e^{t}\right)^{k} e^{-t S}
\end{aligned}
$$

A suitable value for the parameter t is given by letting $\mathbb{E}_{t}(S)=a$. Then, we conclude that:

$$
\sum_{j=1}^{k} \frac{p e^{t}}{1-p+p e^{t}}=a \quad \Rightarrow \quad t=\log \frac{a(1-p)}{p(k-a)}
$$

```
n = 1e+05
p = 0.4
k = 20
a = 16
U = matrix(runif(k * n), n)
S = rowSums(U < p)
X = S >= a
I = mean(X)
print(I)
## [1] 0.00032
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.0003198976
t = log(a* (1 - p)/(p * (k - a)))
print(t)
## [1] 1.791759
V = matrix(runif(k * n), n)
S = rowSums(V < p * exp(t)/(1 - p + p * exp(t)))
W = (S >= a) * (1 - p + p * exp(t))^k * exp(-t * S)
I = mean(W)
print(I)
## [1] 0.0003173146
VarW = mean((W - I)^2)
print(VarW)
## [1] 2.419507e-07
100 * (VarX - VarW)/VarX
## [1] 99.92437
```

Example 4.22. Consider a $M / M / 1$ queuing system, where the arrival process is Poisson with rate λ, inter-arrival times P_{1}, P_{2}, \ldots and the services times R_{1}, R_{2}, \ldots follow the $\operatorname{Exp}(\mu)$ distribution with $\mu>\lambda$. We let W_{j} be the waiting time of the j-th customer in the queue. Additionally, we define:

$$
S_{W}=\sum_{j=1}^{N^{*}} W_{j}, \quad S_{P}=\sum_{j=1}^{N^{*}} P_{j}, \quad S_{R}=\sum_{j=1}^{N *} R_{j}
$$

We want to estimate the probability $\mathbb{P}\left(S_{W}>a\right)$. We will use the importance variables $\widetilde{P}_{1}, \ldots, \widetilde{P}_{N^{*}} \sim \operatorname{Exp}(\mu)$ and $\widetilde{R}_{1}, \ldots, \widetilde{R}_{N^{*}} \sim \operatorname{Exp}(\lambda)$. Then, we infer that:

$$
\begin{aligned}
\phi(x) & =\frac{h(x) f(x)}{g(x)}=\mathbb{1}_{\left\{S_{W}>a\right\}} \prod_{j=1}^{N^{*}} \frac{f_{P_{j}}\left(x_{j}\right) f_{R_{j}}\left(y_{j}\right)}{f_{\widetilde{P}_{j}}\left(x_{j}\right) f_{\widetilde{R}_{j}}\left(y_{j}\right)}=\mathbb{1}_{\left\{S_{W}>a\right\}} \prod_{j=1}^{N^{*}} \frac{\lambda e^{-\lambda x_{j}} \mu e^{-\mu y_{j}}}{\mu e^{-\mu x_{j}} \lambda e^{-\lambda y_{j}}} \\
& =\mathbb{1}_{\left\{S_{W}>a\right\}} \exp \left\{(\mu-\lambda) \sum_{j=1}^{N^{*}} x_{j}+(\lambda-\mu) \sum_{j=1}^{N^{*}} y_{j}\right\}=\mathbb{1}_{\left\{S_{W}>a\right\}} e^{(\mu-\lambda)\left(S_{P}-S_{R}\right)} .
\end{aligned}
$$

$\mathrm{n}=10000$
lambda $=4$
$\mathrm{mu}=6$
Nstar $=5$
$\mathrm{a}=4$
SW = numeric (n)
for (i in 1:n) \{
$Q=0$
$\mathrm{U}=\operatorname{runif}(1)$
$A=-\log (U) / l a m b d a$
D $=\operatorname{Inf}$
$\mathrm{N}=0$
arrivals = numeric (0)
while (N < Nstar || Q > 0) \{
$\mathrm{t}=\min (\mathrm{A}, \mathrm{D})$
if ($t==A$) \{
$Q=Q+1$
$\mathrm{N}=\mathrm{N}+1$
if (N < Nstar) \{
$\mathrm{U}=$ runif(1)
$A=t-\log (U) / l a m b d a$
\} else \{
$\mathrm{A}=\operatorname{Inf}$ \}
if $(Q==1)$ \{
$\mathrm{V}=$ runif (1)
$D=t-\log (V) / m u$ \}

```
            arrivals = c(arrivals, t)
        } else {
            Q = Q - 1
            arrivals = arrivals[-1]
            if (Q > 0) {
                    V = runif(1)
                    D = t - log(V)/mu
                    SW[i] = SW[i] + t - arrivals[1]
        } else {
            D = Inf
        }
        }
    }
}
X = SW > a
I = mean(X)
print(I)
## [1] 0.0019
VarX = mean((X - I) ^2)
print(VarX)
## [1] 0.00189639
SW = numeric(n)
SP = numeric(n)
SR = numeric(n)
for (i in 1:n) {
    Q = 0
    U = runif(1)
    A = -log(U)/mu
    SP[i] = SP[i] - log(U)/mu
    D = Inf
    N = 0
    arrivals = numeric(0)
    while (N < Nstar || Q > 0) {
        t = min(A, D)
        if (t == A) {
            Q = Q + 1
            N = N + 1
            if (N < Nstar) {
                    U = runif(1)
                    A = t - log(U)/mu
                    SP[i] = SP[i] - log(U)/mu
```

```
                } else {
                    A = Inf
        }
        if (Q == 1) {
            V = runif(1)
            D = t - log(V)/lambda
            SR[i] = SR[i] - log(V)/lambda
        }
        arrivals = c(arrivals, t)
        } else {
            Q = Q - 1
            arrivals = arrivals[-1]
            if (Q > 0) {
                V = runif(1)
                    D = t - log(V)/lambda
                SR[i] = SR[i] - log(V)/lambda
                SW[i] = SW[i] + t - arrivals[1]
            } else {
                    D = Inf
            }
            }
        }
}
W = (SW > a) * exp((mu - lambda) * (SP - SR))
I = mean(W)
print(I)
## [1] 0.002036983
VarW = mean((W - I)^2)
print(VarW)
## [1] 0.0001958506
100 * (VarX - VarW)/VarX
## [1] 89.67245
```


5 Markov Chain Monte Carlo Methods

Gibbs Sampler

We want to generate a sample $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ following the joint PDF $f_{X_{1}, X_{2}, \ldots, X_{k}}$. Suppose that either the marginal PDFs $f_{X_{j}}$ are intractable or it's difficult to simulate from them, but it's easy to simulate from the conditional PDFs $f_{X_{j} \mid X_{-j}} \equiv f_{X_{j} \mid X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{k}}$.

Algorithm 5.1 Gibbs Sampler

Input: Conditional CDFs, burn-in size b and sample size n.
1: We consider the initial values $X_{1}^{(1)}, X_{2}^{(1)}, \ldots, X_{k}^{(1)}$.
2: For $i=2,3, \ldots, b+n$, we iterate the following step:
i: For $j=1,2, \ldots, k$, we generate $X_{j}^{(i)}$ according to the conditional CDF:

$$
F_{X_{j} \mid X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{k}}\left(x \mid X_{1}^{(i)}, \ldots, X_{j-1}^{(i)}, X_{j+1}^{(i-1)}, \ldots, X_{k}^{(i-1)}\right) .
$$

Output: Random sample $X^{(b+1)}, X^{(b+2)}, \ldots, X^{(b+n)}$ following the joint CDF.

The sequence of random variables $\left\{X^{(i)}\right\}$ constitutes a discrete-time Markov process with the following transition kernel:

$$
K\left(x^{(i)} \mid x^{(i-1)}\right)=\prod_{j=1}^{k} f_{X_{j} \mid X_{-j}}\left(x_{j}^{(i)} \mid x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)
$$

Theorem 5.1. If the Markov process $\left\{X^{(i)}\right\}$ with transition kernel $K\left(x^{(i)} \mid x^{(i-1)}\right)$ and state-space S is irreducible, then $f_{X_{1}, X_{2}, \ldots, X_{k}}$ is its unique stationary distribution.

Proof. We define the reverse transition kernel:

$$
L\left(x^{(i-1)} \mid x^{(i)}\right)=\prod_{j=1}^{k} f_{X_{j} \mid X_{-j}}\left(x_{j}^{(i-1)} \mid x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)
$$

Then, we observe that:

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{k}}\left(x^{(i-1)}\right) K\left(x^{(i)} \mid x^{(i-1)}\right) & =f_{X_{1}, \ldots, X_{k}}\left(x^{(i-1)}\right) \prod_{j=1}^{k} f_{X_{j} \mid X_{-j}}\left(x_{j}^{(i)} \mid x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right) \\
& =f_{X_{1}, \ldots, X_{k}}\left(x^{(i-1)}\right) \prod_{j=1}^{k} \frac{f_{X_{1}, \ldots, X_{k}}\left(x_{1}^{(i)}, \ldots, x_{j}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)}{f_{X_{-j}}\left(x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)} \\
& =f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right) \prod_{j=1}^{k} \frac{f_{X_{1}, \ldots, X_{k}}\left(x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)}{f_{X_{-j}}\left(x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right)} \\
& =f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right) \prod_{j=1}^{k} f_{X_{j} \mid X_{-j}}\left(x_{j}^{(i-1)} \mid x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{k}^{(i-1)}\right) \\
& =f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right) L\left(x^{(i-1)} \mid x^{(i)}\right) .
\end{aligned}
$$

Therefore, we infer that:

$$
\begin{aligned}
\int_{S} f_{X_{1}, \ldots, X_{k}}\left(x^{(i-1)}\right) K\left(x^{(i)} \mid x^{(i-1)}\right) d x^{(i-1)} & =\int_{S} f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right) L\left(x^{(i-1)} \mid x^{(i)}\right) d x^{(i-1)} \\
& =f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right) \int_{S} L\left(x^{(i-1)} \mid x^{(i)}\right) d x^{(i-1)}=f_{X_{1}, \ldots, X_{k}}\left(x^{(i)}\right)
\end{aligned}
$$

Since the function $f_{X_{1}, X_{2}, \ldots, X_{k}}$ satisfies the balance equations for the Markov process $\left\{X^{(i)}\right\}$, we conclude that it is the unique stationary distribution of the Markov process.

Note 5.1. Let S_{j} be the support of the marginal CDF $F_{X_{j}}$ for $j=1,2, \ldots, k$. If $S=S_{1} \times S_{2} \times \cdots \times S_{k}$, then the Markov process $\left\{X^{(i)}\right\}$ with state-space S and transition kernel $K\left(x^{(i)} \mid x^{(i-1)}\right)$ is irreducible.

Note 5.2. i. The Markov Chain Monte Carlo algorithms require an initial number of iterations until the Markov process which they produce converges to its stationary distribution, i.e. the given joint PDF. This initial number of iterations is called the burn-in period of the algorithm and the sample which has been produced during this period is thrown away since it doesn't follow the given distribution.
ii. The observations which are produced by a Markov Chain Monte Carlo algorithm are not independent. On the contrary, they display a dependence pattern which is determined by the properties of the Markov process that the algorithm produces. The lack of independence of the observations doesn't influence the approximation of expected values via the Monte Carlo method. In cases where the use of random samples is required, we can perform a thinning of the sample which is produced by the algorithm. If we calculate that up to T^{*} consecutive observations which are produced by the algorithm display statistically significant autocorrelation, then we accept only one out of every T^{*} observations produced by the algorithm and reject all the rest.

Example 5.1. We want to generate a sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $\operatorname{PDF} f(x, y) \propto e^{-x-y-a x y}$ for $x, y>0$ and $a>0$. We observe that:

$$
f_{X \mid Y}(x \mid y) \propto e^{-x-a x y}=e^{-(y+a) x}, \quad f_{Y \mid X}(y \mid x) \propto e^{-y-a x y}=e^{-(x+a) y}
$$

In other words, $(X \mid Y=y) \sim \operatorname{Exp}(y+a)$ and $(Y \mid X=x) \sim \operatorname{Exp}(x+a)$.

```
library(plot3D)
b = 10000
n = 10000
a = 2
X = numeric(b + n)
Y = numeric(b + n)
for (i in 2:(b + n)) {
    U = runif(1)
    X[i] = -log(U)/(Y[i - 1] + a)
    V = runif(1)
    Y[i] = -log(V)/(X[i] + a)
}
X = X[-(1:b)]
Y = Y[-(1:b)]
plot(X, Y, pch = 16, cex = 0.2)
```



```
hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 135,
    border = 1)
```


Example 5.2. We want to generate a sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $\operatorname{PDF} f(x, y) \propto x^{k} e^{-(\lambda+y) x}$ for $x, y>0$ and $k, \lambda>0$. We observe that:

$$
f_{X \mid Y}(x \mid y) \propto x^{k} e^{-(\lambda+y) x}, \quad f_{Y \mid X}(y \mid x) \propto e^{-x y} .
$$

In other words, $(X \mid Y=y) \sim \operatorname{Gamma}(k+1, \lambda+y)$ and $(Y \mid X=x) \sim \operatorname{Exp}(x)$.
library (plot3D)
b $=10000$
$\mathrm{n}=10000$
$\mathrm{k}=10$
lambda $=2$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
$\mathrm{Y}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(b+n)$) \{
$\mathrm{U}=\operatorname{runif}(\mathrm{k}+1)$
$R=-\log (U) /(\operatorname{lambda}+Y[i-1])$

```
    X[i] = sum(R)
    V = runif(1)
    Y[i] = - log(V)/X[i]
}
X = X[-(1:b)]
Y = Y[-(1:b)]
plot(X, Y, pch = 16, cex = 0.2)
```


hist3D ($z=$ table(cut $(X, 20), \operatorname{cut}(Y, 20))$, colkey $=$ FALSE, phi $=0$, theta $=135$, border = 1)

Example 5.3. We want to generate a sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $\operatorname{PDF} f(x, y) \propto 1$ for $0 \leqslant y \leqslant x \leqslant 1$. We observe that $(X \mid Y=y) \sim \operatorname{Unif}[y, 1]$ for $y \in[0,1]$ and $(Y \mid X=x) \sim \operatorname{Unif}[0, x]$ for $x \in[0,1]$.
library (plot3D)
b $=10000$
$\mathrm{n}=10000$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
$\mathrm{Y}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(b+n)$) \{

```
    U = runif(1)
    X[i] = (1 - Y[i - 1]) * U + Y[i - 1]
    V = runif(1)
    Y[i] = X[i] * V
}
X = X[-(1:b)]
Y = Y[-(1:b)]
plot(X, Y, pch = 16, cex = 0.2)
```



```
hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta = 225,
    border = 1)
```


Example 5.4. We want to generate a sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $\operatorname{PDF} f(x, y) \propto x$ for $0 \leqslant x \leqslant y \leqslant 1$. For $x \in[0,1]$, we observe that $f_{Y \mid X}(y \mid x) \propto 1$, i.e. $(Y \mid X=x) \sim \operatorname{Unif}[x, 1]$. For $y \in[0,1]$, we observe that $f_{X \mid Y}(x \mid y) \propto x$. For $x \in[0, y]$, we calculate that:

$$
f_{X \mid Y}(x \mid y)=\frac{2 x}{y^{2}}, \quad F_{X \mid Y}(x \mid y)=\frac{x^{2}}{y^{2}}, \quad F_{X \mid Y}^{-1}(u \mid y)=y \sqrt{u}
$$

Example 5.5. For $\rho \in(-1,1)$, we want to generate a sample:

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim \mathcal{N}_{2}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)
$$

For $x, y \in \mathbb{R}$, we calculate that:

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\}, \\
f_{X \mid Y}(x \mid y) \propto \exp \left\{-\frac{x^{2}-2 \rho y x}{2\left(1-\rho^{2}\right)}\right\} \propto \exp \left\{-\frac{(x-\rho y)^{2}}{2\left(1-\rho^{2}\right)}\right\}, \\
f_{Y \mid X}(y \mid x) \propto \exp \left\{-\frac{y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right\} \propto \exp \left\{-\frac{(y-\rho x)^{2}}{2\left(1-\rho^{2}\right)}\right\} .
\end{gathered}
$$

In other words, $(X \mid Y=y) \sim \mathcal{N}\left(\rho y, 1-\rho^{2}\right)$ and $(Y \mid X=x) \sim \mathcal{N}\left(\rho x, 1-\rho^{2}\right)$.

```
library(plot3D)
b = 10000
n = 10000
rho = -0.5
lambda = 1/sqrt(1 - rho^2)
M = sqrt(2 * exp(1)/pi)
X = numeric(b + n)
Y = numeric(b + n)
for (i in 2:(b + n)) {
    W = runif(1)
    X[i] = ifelse(W <= 0.5, rho * Y[i - 1] + log(2 * W)/lambda, rho * Y[i -
        1] - log(2 * (1 - W))/lambda)
    U = runif(1)
    V = M * dexp(abs(X[i] - rho * Y[i - 1]), lambda)/2 * U
    while (dnorm(X[i], rho * Y[i - 1], sqrt(1 - rho^2)) < V) {
        W = runif(1)
        X[i] = ifelse(W <= 0.5, rho * Y[i - 1] + log(2 * W)/lambda, rho * Y[i -
            1] - log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(X[i] - rho * Y[i - 1]), lambda)/2 * U
    }
    W = runif(1)
    Y[i] = ifelse(W <= 0.5, rho * X[i] + log(2 * W)/lambda, rho * X[i] - log(2 *
        (1 - W))/lambda)
    U = runif(1)
    V = M * dexp(abs(Y[i] - rho * X[i]), lambda)/2 * U
    while (dnorm(Y[i], rho * X[i], sqrt(1 - rho^2)) < V) {
        W = runif(1)
```

```
        Y[i] = ifelse(W <= 0.5, rho * X[i] + log(2 * W)/lambda, rho * X[i] -
            log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y[i] - rho * X[i]), lambda)/2 * U
    }
}
X = X[-(1:b)]
Y = Y[-(1:b)]
plot(X, Y, pch = 16, cex = 0.2)
```



```
hist3D(z = table(cut(X, 20), cut(Y, 20)), colkey = FALSE, phi = 0, theta \(=135\), border = 1)
```


Example 5.6. We want to generate a sample $\left(X_{1}, Y_{1}, Z_{1}\right), \ldots,\left(X_{n}, Y_{n}, Z_{n}\right)$ with the following PDF:

$$
f(x, y, z) \propto\binom{z}{x} y^{x+a-1}(1-y)^{z x+b-1} \frac{\lambda^{z}}{z!}, \quad x \in\{0,1, \ldots, z\}, \quad y \in[0,1], \quad z \in \mathbb{N} .
$$

We observe that:

$$
\begin{gathered}
f_{X \mid Y, Z}(x \mid y, z) \propto\binom{z}{x} y^{x}(1-y)^{z x}=\binom{z}{x}\left[y(1-y)^{z}\right]^{x} \propto\binom{z}{x}\left[\frac{y(1-y)^{z}}{y(1-y)^{z}+1}\right]^{x}\left[\frac{1}{y(1-y)^{z}+1}\right]^{z-x}, \\
f_{Y \mid X, Z}(y \mid x, z) \propto y^{x+a-1}(1-y)^{z x+b-1}, \\
f_{Z \mid X, Y}(z \mid x, y) \propto\binom{z}{x}(1-y)^{z x} \frac{\lambda^{z}}{z!} \propto \frac{\left[\lambda(1-y)^{x}\right]^{z}}{(z-x)!} \propto \frac{\left[\lambda(1-y)^{x}\right]^{z-x}}{(z-x)!} .
\end{gathered}
$$

In other words, $(X \mid Y=y, Z=z) \sim \operatorname{Binom}\left(z, \frac{y(1-y)^{z}}{y(1-y)^{z}+1}\right),(Y \mid X=x, Z=z) \sim \operatorname{Beta}(z+a, z x+b)$ and $(Z-X \mid X=x, Y=y) \sim \operatorname{Poisson}\left(\lambda(1-y)^{x}\right)$.
$\mathrm{b}=10000$
n $=10000$
$\mathrm{a}=2$
b $=3$
lambda $=4$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
$\mathrm{Y}=$ numeric $(\mathrm{b}+\mathrm{n})$
$\mathrm{Z}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(\mathrm{b}+\mathrm{n})$) \{
U = runif(Z[i-1])
$X[i]=\operatorname{sum}(U<Y[i-1] *(1-Y[i-1]) \wedge Z[i-1] /(Y[i-1] *(1-Y[i-$ 1]) $\left.\left.{ }^{\wedge} Z[i-1]+1\right)\right)$
$M=\operatorname{dbeta}((Z[i-1]+a-1) /(Z[i-1] *(1+X[i])+a+b-2), Z[i-$ 1] + a, Z[i - 1] * X[i] + b)
$\mathrm{Y}[\mathrm{i}]=\operatorname{runif}(1)$
$\mathrm{U}=\operatorname{runif}(1)$
$\mathrm{V}=\mathrm{M} * \mathrm{U}$
while (dbeta(Y[i], Z[i-1] + a, Z[i-1] * X[i] + b) < V) \{
$\mathrm{Y}[\mathrm{i}]=\operatorname{runif}(1)$
$\mathrm{U}=\operatorname{runif}(1)$

$$
\mathrm{V}=\mathrm{M} * \mathrm{U}
$$

\}
Z[i] $=X[i]$
$\mathrm{U}=\operatorname{runif}(1)$
$\mathrm{pmf}=\exp (-(\mathrm{l}$ ambda $*(1-\mathrm{Y}[\mathrm{i}]) \wedge \mathrm{X}[\mathrm{i}]))$
cdf = pmf
while (U > cdf) \{ $\mathrm{Z}[\mathrm{i}]=\mathrm{Z}[\mathrm{i}]+1$
pmf = pmf * lambda * ($1-\mathrm{Y}[\mathrm{i}])^{\wedge} \mathrm{X}[\mathrm{i}] /(\mathrm{Z}[\mathrm{i}]-\mathrm{X}[\mathrm{i}])$
$\mathrm{cdf}=\mathrm{cdf}+\mathrm{pmf}$
\}
\}
$x=x[-(1: b)]$
$\mathrm{Y}=\mathrm{Y}[-(1: \mathrm{b})]$
$\mathrm{Z}=\mathrm{Z}[-(1: \mathrm{b})]$
barplot(table(factor(X, levels $=0: \max (X))) / n$, space $=0, x l a b=" X ")$

hist(Y, "FD", freq = FALSE, main = NA)

barplot(table(factor $(Z$, levels $=0: \max (Z))) / n$, space $=0, x l a b=" Z ")$

Z
Example 5.7. Let $X \sim \operatorname{Poisson}(4)$ and $Y \sim \operatorname{Poisson}(7)$ be independent random variables. We want to generate a sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ following the conditional distribution of (X, Y) given that $X+Y \leqslant 10$. For $x, y \in \mathbb{N}$ with $x+y \leqslant 10$, we calculate that:

$$
\begin{gathered}
f_{X, Y \mid X+Y \leqslant 10}(x, y)=\frac{f_{X, Y}(x, y)}{\mathbb{P}(X+Y \leqslant 10)} \propto \frac{4^{x} 7^{y}}{x!y!}, \\
f_{X \mid Y, X+Y \leqslant 10}(x \mid y) \propto \frac{4^{x}}{x!}, \quad f_{Y \mid X, X+Y \leqslant 10}(y \mid x) \propto \frac{7^{y}}{y!} .
\end{gathered}
$$

In other words, $(X \mid Y=y, X+Y \leqslant 10) \stackrel{d}{=}(X \mid X \leqslant 10-y)$ and $(Y \mid X=x, X+Y \leqslant 10) \stackrel{d}{=}(Y \mid Y \leqslant 10-x)$.
$\mathrm{b}=10000$
$\mathrm{n}=10000$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
$\mathrm{Y}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(b+n)$) \{
$\mathrm{U}=$ runif (1)
pmf $=\exp (-4) /$ ppois (10 $-\mathrm{Y}[\mathrm{i}-1]$, 4)
cdf = pmf
while (U > cdf) \{
$X[i]=X[i]+1$
pmf $=$ pmf * 4/X[i]
$c d f=c d f+p m f$
\}
$\mathrm{V}=\operatorname{runif}(1)$
pmf $=\exp (-7) /$ ppois (10 - X[i], 7)
$c d f=p m f$
while (V > cdf) \{
$\mathrm{Y}[\mathrm{i}]=\mathrm{Y}[\mathrm{i}]+1$
pmf $=$ pmf * $7 / \mathrm{Y}[\mathrm{i}]$

```
        cdf = cdf + pmf
    }
}
X = X[-(1:b)]
Y = Y[-(1:b)]
barplot(table(factor(X, levels = 0:max(X)))/n, space = 0, xlab = "X")
```


barplot(table(factor (Y, levels = 0:max (Y)))/n, space = $0, \mathrm{xlab}=$ "Y")

Example 5.8. Let $X_{j} \sim \operatorname{Exp}\left(\lambda_{j}\right)$ be independent random variables for $j=1,2, \ldots, k$. We define the random variable $S=X_{1}+\cdots+X_{k}$. We want to generate a sample $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ following the conditional distribution of $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ given that $S>c$. For $x_{1}, \ldots, x_{k}>0$ with $x_{1}+\cdots+x_{k}>c$, we calculate that:

$$
f_{X_{1}, \ldots, X_{k} \mid S>c}\left(x_{1}, \ldots, x_{k}\right)=\frac{f_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)}{\mathbb{P}\left(X_{1}+\cdots+X_{k}>c\right)} \propto \prod_{j=1}^{k} e^{-\lambda_{j} x_{j}}=\exp \left\{-\sum_{j=1}^{k} \lambda_{j} x_{j}\right\}
$$

$$
f_{X_{j} \mid X_{-j}, S>c}\left(x_{j} \mid x_{-j}\right) \propto e^{-\lambda_{j} x_{j}}
$$

We let $s_{-j}=x_{1}+\cdots+x_{j-1}+x_{j+1}+\cdots+x_{k}$. Then, $\left(X_{j} \mid X_{-j}=x_{-j}, S>c\right) \stackrel{d}{=}\left(X_{j} \mid X_{j}>c-s_{-j}\right)$. In other words, we infer that $\left(X_{j} \mid X_{-j}=x_{-j}, S>c\right) \stackrel{d}{=} X_{j}+\max \left\{c-s_{-j}, 0\right\}$.
$\mathrm{b}=10000$
$\mathrm{n}=10000$
$c=10$
$\mathrm{k}=4$
lambda $=\operatorname{rep}(1, k)$
$\mathrm{X}=\operatorname{matrix}(0, \mathrm{~b}+\mathrm{n}, \mathrm{k})$
for (i in 2: $(b+n)$) \{
for (j in 1:k) \{
if ($\mathrm{j}==1$) \{
$\mathrm{s}=\operatorname{sum}(\mathrm{X}[\mathrm{i}-1,-1])$ \} else if ($\mathrm{j}=\mathrm{k}$) \{
$s=\operatorname{sum}(X[i,-k])$
\} else \{
$s=\operatorname{sum}(c(X[i, 1:(j-1)], X[i-1,(j+1): k]))$
\}
$\mathrm{U}=\operatorname{runif}(1)$
$X[i, j]=\max (c-s, 0)-\log (U) / l a m b d a[j]$
\}
\}
$\mathrm{X}=\mathrm{X}[-(1: \mathrm{b})$,
hist(X[, 1], "FD", freq = FALSE, main = NA, xlab = NA)

Example 5.9. Let $Y \sim \operatorname{Unif}[0.02,0.1]$ be a random variable. Consider the conditionally independent random variables $\left(W_{1} \mid Y=y\right),\left(W_{2} \mid Y=y\right) \sim \operatorname{Exp}(y)$. Given that $W_{1}=w_{1}$ and $W_{2}=w_{2}$, we define the conditionally independent Poisson processes $\left\{N_{1}(t): t \geqslant 0\right\}$ with rate w_{1} and $\left\{N_{2}(t): t \geqslant 0\right\}$ with rate w_{2}. We want to estimate the following conditional expected values:

$$
\mathbb{E}\left[N_{1}(1) \mid N_{1}(0.5)=25, N_{2}(0.5)=18\right], \quad \mathbb{E}\left[N_{2}(1) \mid N_{1}(0.5)=25, N_{2}(0.5)=18\right] .
$$

According to the law of iterated expectations, we calculate that:

$$
\begin{aligned}
\mathbb{E}\left[N_{1}(1) \mid N_{1}(0.5)=25, N_{2}(0.5)=18\right] & =\mathbb{E}\left[\mathbb{E}\left(N_{1}(1) \mid W_{1}, N_{1}(0.5)=25, N_{2}(0.5)=18\right)\right] \\
& =\mathbb{E}\left[25+0.5 W_{1} \mid N_{1}(0.5)=25, N_{2}(0.5)=18\right] \\
\mathbb{E}\left[N_{2}(1) \mid N_{1}(0.5)=25, N_{2}(0.5)\right]= & \mathbb{E}\left[\mathbb{E}\left(N_{2}(1) \mid W_{2}, N_{1}(0.5)=25, N_{2}(0.5)=18\right)\right] \\
= & \mathbb{E}\left[18+0.5 W_{2} \mid N_{1}(0.5)=25, N_{2}(0.5)=18\right]
\end{aligned}
$$

We define the events $A_{1}=\left[N_{1}(0.5)=25\right], A_{2}=\left[N_{2}(0.5)=18\right]$. For $y \in[0.02,0.1]$ and $w_{1}, w_{2}>0$, we calculate that:

$$
\begin{aligned}
f_{Y, W_{1}, W_{2} \mid A_{1}, A_{2}}\left(y, w_{1}, w_{2}\right) & =\frac{f_{Y, W_{1}, W_{2}}\left(y, w_{1}, w_{2}\right) \mathbb{P}\left[A_{1}, A_{2} \mid Y=y, W_{1}=w_{1}, W_{2}=w_{2}\right]}{\mathbb{P}\left(A_{1}, A_{2}\right)} \\
& \propto f_{Y}(y) f_{W_{1}, W_{2} \mid Y}\left(w_{1}, w_{2} \mid y\right) \mathbb{P}\left[A_{1} \mid W_{1}=w_{1}\right] \mathbb{P}\left[A_{2} \mid W_{2}=w_{2}\right] \\
& \propto f_{W_{1} \mid Y}\left(w_{1} \mid y\right) f_{W_{2} \mid Y}\left(w_{2} \mid y\right) e^{-0.5 w_{1}} w_{1}^{25} e^{-0.5 w_{2}} w_{2}^{18} \\
& =y e^{-y w_{1}} y e^{-y w_{2}} w_{1}^{25} w_{2}^{18} e^{-0.5\left(w_{1}+w_{2}\right)}=y^{2} w_{1}^{25} w_{2}^{18} e^{-(y+0.5)\left(w_{1}+w_{2}\right)}, \\
& f_{Y \mid W_{1}, W_{2}, A_{1}, A_{2}}\left(y \mid w_{1}, w_{2}\right) \propto y^{2} e^{-\left(w_{1}+w_{2}\right) y}, \\
& f_{W_{1} \mid Y, W_{2}, A_{1}, A_{2}}\left(w_{1} \mid y, w_{2}\right) \propto w_{1}^{25} e^{-(y+0.5) w_{1}}, \\
& f_{W_{2} \mid Y, W_{1}, A_{1}, A_{2}}\left(w_{2} \mid y, w_{1}\right) \propto w_{2}^{18} e^{-(y+0.5) w_{2}} .
\end{aligned}
$$

If $\left(X \mid W_{1}=w_{1}, W_{2}=w_{2}\right) \sim \operatorname{Gamma}\left(3, w_{1}+w_{2}\right)$, then:

$$
\begin{gathered}
{\left[Y \mid W_{1}=w_{2}, W_{2}=w_{2}, A_{1}, A_{2}\right] \stackrel{d}{=}\left(X \mid W_{1}=w_{1}, W_{2}=w_{2}, 0.02 \leqslant X \leqslant 0.1\right)} \\
{\left[W_{1} \mid Y=y, W_{2}=w_{2}, A_{1}, A_{2}\right] \sim \operatorname{Gamma}(26, y+0.5)} \\
{\left[W_{2} \mid Y=y, W_{1}=w_{1}, A_{1}, A_{2}\right] \sim \operatorname{Gamma}(19, y+0.5)}
\end{gathered}
$$

```
library(plot3D)
b = 10000
n = 10000
Y = numeric(b + n)
W1 = numeric(b + n)
W2 = numeric(b + n)
W1[1] = 1
W2[1] = 1
for (i in 2:(b + n)) {
    U = runif(3)
    R = -log(U)/(W1[i - 1] + W2[i - 1])
    Y[i] = sum(R)
    while (Y[i] < 0.02 || Y[i] > 0.1) {
        U = runif(3)
        R = -log(U)/(W1[i - 1] + W2[i - 1])
        Y[i] = sum(R)
    }
```

```
    U = runif(26)
    R = -log(U)/(Y[i] + 0.5)
    W1[i] = sum(R)
    U = runif(19)
    R = -log(U)/(Y[i] + 0.5)
    W2[i] = sum(R)
}
Y = Y[-(1:b)]
W1 = W1[-(1:b)]
W2 = W2[-(1:b)]
scatter3D(W1, W2, Y, colvar = NA, phi = 0, theta = 315, xlab = "W1", ylab = "W2",
    zlab = "Y", pch = 16, cex = 0.1)
```



```
hist(Y, "FD", freq = FALSE, main = NA)
```



```
hist(W1, "FD", freq = FALSE, main = NA, xlab = expression(W[1]))
```

mean(25 + 0.5 * W1)
mean(25 + 0.5 * W1)

[1] 48.99764

[1] 48.99764

mean(18 + 0.5 * W2)
mean(18 + 0.5 * W2)

[1] 35.43046

[1] 35.43046

Slice Sampling

We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF f with support S and $M=\max _{x \in S} f(x)$. Suppose that the application of the inverse transform method is impossible. Consider the random variables X, Y with joint $\operatorname{PDF} f_{X, Y}(x, y)=\mathbb{1}_{\{y \leqslant f(x)\}}$ for $x \in S$ and $y \in[0, M]$. Then, we observe that:

$$
f_{X}(x)=\int_{0}^{M} f_{X, Y}(x, y) d y=\int_{0}^{f(x)} 1 d y=f(x), \quad f_{X \mid Y}(x \mid y) \propto \mathbb{1}_{\left\{x \in f^{-1}[y, \infty)\right\}}
$$

where $f^{-1}[y, \infty)=\{x \in S: f(x) \geqslant y\}$. In other words, $X \sim f,(Y \mid X=x) \sim \operatorname{Unif}[0, f(x)]$ and the conditional distribution of X given that $Y=y$ is uniform on the set $f^{-1}[y, \infty)$.

Algorithm 5.2 Slice Sampling

Input: PDF f, burn-in size b and sample size n.
1: We consider the initial value X_{1}.
2: For $i=2,3, \ldots, b+n$, we iterate the following steps:
i: We generate $U \sim \operatorname{Unif}[0,1]$ and let $Y=f\left(X_{i-1}\right) U \sim \operatorname{Unif}\left[0, f\left(X_{i-1}\right)\right]$.
ii: We generate X_{i} following the uniform distribution on $f^{-1}[Y, \infty)$.
Output: Random sample $X_{b+1}, X_{b+2}, \ldots, X_{b+n}$ following the PDF f.

Example 5.10. We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the $\operatorname{PDF} f(x)=e^{-\sqrt{x}} / 2$ for $x>0$. For $y \in[0,0.5]$, we observe that $f(x) \geqslant y \Leftrightarrow x \leqslant \log ^{2}(2 y)$. In other words, $(X \mid Y=y) \sim$ Unif $\left[0, \log ^{2}(2 y)\right]$.
b $=1000$
$\mathrm{n}=1000$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: (b + n)) \{
U = runif(1)
$\mathrm{Y}=\exp (-\operatorname{sqrt}(\mathrm{X}[\mathrm{i}-1])) / 2 * \mathrm{U}$
$\mathrm{V}=$ runif(1)
$\mathrm{X}[\mathrm{i}]=\log (2 * \mathrm{Y})^{\wedge} 2 * \mathrm{~V}$
\}
$X=X[-(1: b)]$
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(exp(-sqrt(x))/2, add = TRUE, col = "red", lwd = 2)

Example 5.11. We want to generate a sample $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. For $y \in\left[0, \frac{1}{\sqrt{2 \pi} \sigma}\right]$, we observe that:

$$
f(x) \geqslant y \quad \Leftrightarrow \quad \mu-\sigma \sqrt{\log \frac{1}{2 \pi \sigma^{2} y^{2}}} \leqslant x \leqslant \mu+\sigma \sqrt{\log \frac{1}{2 \pi \sigma^{2} y^{2}}} .
$$

In other words,

$$
(X \mid Y=y) \sim \text { Unif }\left[\mu-\sigma \sqrt{\log \frac{1}{2 \pi \sigma^{2} y^{2}}}, \mu+\sigma \sqrt{\log \frac{1}{2 \pi \sigma^{2} y^{2}}}\right]
$$

$b=10000$
$\mathrm{n}=10000$
$\mathrm{mu}=1$
sigma $=2$
X = numeric $(b+n)$
for (i in 2: $(b+n)$) \{
$\mathrm{U}=\mathrm{runif}(1)$
$Y=\exp \left(-(X[i-1]-m u)^{\wedge} 2 /\left(2 * \operatorname{sigma}{ }^{\wedge} 2\right)\right) /(\operatorname{sqrt}(2 * p i) *$ sigma $) * U$
$\mathrm{V}=$ runif(1)
$\mathrm{X}[\mathrm{i}]=2 * \operatorname{sigma} * \operatorname{sqrt}\left(\log \left(1 /\left(2 * \operatorname{pi} * \operatorname{sigma}{ }^{\wedge} 2 * \mathrm{Y}^{\wedge} 2\right)\right)\right) * \mathrm{~V}+\mathrm{mu}-\operatorname{sigma} *$ $\operatorname{sqrt}\left(\log \left(1 /\left(2 * \operatorname{pi} * \operatorname{sigma}{ }^{2} * Y^{\wedge} 2\right)\right)\right)$
\}
$X=X[-(1: b)]$
hist (X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(dnorm(x, mu, sigma), add = TRUE, col = "red", lwd = 2)

Metropolis-Hastings Algorithm

We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF f. Suppose that the application of the inverse transform method or the slice sampling method is impossible.

The sequence of random variables $\left\{X_{i}\right\}$ constitutes a discrete-time Markov process with transition kernel $K\left(x_{i} \mid x_{i-1}\right)=g\left(x_{i} \mid x_{i-1}\right) A\left(x_{i-1}, x_{i}\right)$.

Theorem 5.2. The Markov process $\left\{X_{i}\right\}$ with transition kernel $K\left(x_{i} \mid x_{i-1}\right)$ is reversible and f is its unique stationary distribution.

Proof. If $\frac{f\left(x_{i}\right)}{f\left(x_{i-1}\right)}<\frac{g\left(x_{i} \mid x_{i-1}\right)}{g\left(x_{i-1} \mid x_{i}\right)}$, then it holds that:

$$
A\left(x_{i-1}, x_{i}\right)=\frac{f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right)}{f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right)}, \quad A\left(x_{i}, x_{i-1}\right)=1
$$

Algorithm 5.3 Metropolis-Hastings
 Input: PDF f, conditional proposal PDF g, burn-in size b and sample size n.

1: We consider an initial value X_{1}.
2: For $i=2,3, \ldots, b+n$, we iterate the following steps:
i: We generate Y following the conditional PDF $g\left(y \mid X_{i-1}\right)$.
ii: We generate $U \sim \operatorname{Unif}[0,1]$ and calculate the acceptance probability:

$$
A\left(X_{i-1}, Y\right)=\min \left\{\frac{f(Y) g\left(X_{i-1} \mid Y\right)}{f\left(X_{i-1}\right) g\left(Y \mid X_{i-1}\right)}, 1\right\}
$$

iii: If $U<A\left(X_{i-1}, Y\right)$, then we let $X_{i}=Y$. Otherwise, we let $X_{i}=X_{i-1}$.
Output: Random sample $X_{b+1}, X_{b+2}, \ldots, X_{b+n}$ following the PDF f.

If $\frac{f\left(x_{i}\right)}{f\left(x_{i-1}\right)}>\frac{g\left(x_{i} \mid x_{i-1}\right)}{g\left(x_{i-1} \mid x_{i}\right)}$, then it holds that:

$$
A\left(x_{i-1}, x_{i}\right)=1, \quad A\left(x_{i}, x_{i-1}\right)=\frac{f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right)}{f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right)} .
$$

Therefore, we infer that:

$$
\begin{gathered}
f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right) \min \left\{\frac{f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right)}{f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right)}, 1\right\}=f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right) \min \left\{\frac{f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right)}{f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right)}, 1\right\} \\
\qquad \begin{aligned}
f\left(x_{i-1}\right) K\left(x_{i} \mid x_{i-1}\right) & =f\left(x_{i-1}\right) g\left(x_{i} \mid x_{i-1}\right) A\left(x_{i-1}, x_{i}\right) \\
& =f\left(x_{i}\right) g\left(x_{i-1} \mid x_{i}\right) A\left(x_{i}, x_{i-1}\right)=f\left(x_{i}\right) K\left(x_{i-1} \mid x_{i}\right)
\end{aligned}
\end{gathered}
$$

Since the function f satisfies the detailed balance equations for the Markov process $\left\{X_{i}\right\}$, we conclude that the process $\left\{X_{i}\right\}$ is reversible with unique stationary distribution f.

Example 5.12. We want to generate a sample $X_{1}, \ldots, X_{n} \sim \operatorname{Bin}(k, p)$. We consider the following conditional proposal PMF:

$$
g(y \mid x)=\left\{\begin{array}{cc}
0.5, & x \in\{1,2, \ldots, k-1\}, \quad y=x+1 \\
0.5, & x \in\{1,2, \ldots, k-1\}, \quad y=x-1 \\
1, & x=0, \quad y=1 \\
1, & x=k, \quad y=k-1
\end{array}\right.
$$

i.e. the symmetric random walk on the state-space $S=\{0,1, \ldots, k\}$ with reflecting barriers at states $\{0\}$ and $\{k\}$.

Then, we calculate that:

$$
\frac{f(y) g(x \mid y)}{f(x) g(y \mid x)}=\left\{\begin{array}{cc}
\frac{k-x}{x+1} \frac{p}{1-p}, & x \in\{1,2, \ldots, k-2\}, \quad y=x+1 \\
\frac{x}{k-x+1} \frac{1-p}{p}, & x \in\{2,3, \ldots, k-1\}, \quad y=x-1 \\
\frac{k}{2} \frac{p}{1-p}, & x=0, \quad y=1 \\
\frac{2}{k} \frac{1-p}{p}, & x=1, \quad y=0 \\
\frac{2}{k} \frac{p}{1-p}, & x=k-1, \quad y=k \\
\frac{k}{2} \frac{1-p}{p}, & x=k, \quad y=k-1
\end{array}\right.
$$

b $=10000$
$\mathrm{n}=10000$
$\mathrm{k}=20$
$\mathrm{p}=0.4$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(b+n)$) \{
if (X[i - 1] == 0) \{
$Y=1$
$\mathrm{A}=\mathrm{k} / 2 * \mathrm{p} /(1-\mathrm{p})$
\} else if $(X[i-1]==k)\{$
$\mathrm{Y}=\mathrm{k}-1$
$\mathrm{A}=\mathrm{k} / 2 *(1-\mathrm{p}) / \mathrm{p}$
\} else \{
$\mathrm{V}=$ runif (1)
if (V < 0.5) \{
$\mathrm{Y}=\mathrm{X}[\mathrm{i}-1]+1$
if (Y == k) \{
$\mathrm{A}=2 / \mathrm{k} * \mathrm{p} /(1-\mathrm{p})$
\} else \{
$A=(k-X[i-1]) /(X[i-1]+1) * p /(1-p)$ \}
\} else \{
$\mathrm{Y}=\mathrm{X}[\mathrm{i}-1]-1$
if (Y == 0) \{
$\mathrm{A}=2 / \mathrm{k} *(1-\mathrm{p}) / \mathrm{p}$
\} else \{
$A=X[i-1] /(k-X[i-1]+1) *(1-p) / p$ \}
\}
\}
$\mathrm{U}=\operatorname{runif}(1)$
$X[i]=i f e l s e(U<A, Y, X[i-1])$
\}
$\mathrm{X}=\mathrm{X}[-(1: \mathrm{b})]$
barplot(table(factor (X, levels $=0: k)) / n$, space $=0$)
lines ($0: \mathrm{k}+0.5$, dbinom ($0: \mathrm{k}, \mathrm{k}, \mathrm{p}$), col = "red", lwd = 2)

Example 5.13. Let $X \sim \operatorname{Poisson}(\lambda)$ be a random variable. We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the conditional distribution of X given that $X \leqslant k$. For $x \in\{0,1, \ldots, k\}$, we observe that $f_{X \mid X} \leqslant k(x) \propto \frac{\lambda^{x}}{x!}$. We consider the following conditional proposal PMF:

$$
g(y \mid x)=\left\{\begin{array}{rr}
0.5, & x \in\{0,1, \ldots, k-1\}, \quad y=x+1 \\
0.5, & x \in\{1,2, \ldots, k\}, \quad y=x-1 \\
0.5, & x=0, \quad y=0 \\
0.5, & x=k, \quad y=k
\end{array}\right.
$$

i.e. the symmetric random walk on the state-space $S=\{0,1, \ldots, k\}$ with elastic barriers at states $\{0\}$ and $\{k\}$. Then, we calculate that:

$$
\frac{f(y) g(x \mid y)}{f(x) g(y \mid x)}=\left\{\begin{array}{cc}
\frac{\lambda}{x+1}, & x \in\{0,1, \ldots, k-1\}, \quad y=x+1 \\
\frac{x}{\lambda}, & x \in\{1,2, \ldots, k\}, \quad y=x-1 \\
1, & x=y=0 \\
1, & x=y=k
\end{array}\right.
$$

```
b = 10000
n = 10000
lambda = 10
k = 15
X = numeric(b + n)
for (i in 2:(b + n)) {
    V = runif(1)
    if (X[i - 1] == 0) {
        if (V < 0.5) {
```

```
            Y = 0
            A = 1
        } else {
            Y = 1
            A = lambda
        }
    } else if (X[i - 1] == k) {
        if (V < 0.5) {
            Y = k
            A = 1
        } else {
            Y = k - 1
            A = k/lambda
        }
    } else {
        if (V < 0.5) {
            Y = X[i - 1] + 1
            A = lambda/(X[i - 1] + 1)
        } else {
            Y = X[i - 1] - 1
            A = X[i - 1]/lambda
        }
    }
    U = runif(1)
    X[i] = ifelse(U < A, Y, X[i - 1])
}
X = X[-(1:b)]
barplot(table(factor(X, levels = 0:k))/n, space = 0)
lines(0:k + 0.5, dpois(0:k, lambda)/ppois(k, lambda), col = "red", lwd = 2)
```


Example 5.14. We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF:

$$
f(x)=\frac{1}{2 \sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}+\frac{1}{2 \sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x+\mu)^{2}\right\}
$$

We consider the proposal random variable $Y \sim \mathcal{N}\left(0, \sigma^{2}+\mu^{2}\right)$ with PDF:

$$
g(y)=\frac{1}{\sqrt{2 \pi\left(\sigma^{2}+\mu^{2}\right)}} \exp \left\{-\frac{1}{2\left(\sigma^{2}+\mu^{2}\right)} y^{2}\right\}
$$

We observe that the proposal PDF doesn't depend on the current state of the Markov process $\left\{X_{i}\right\}$.

```
b = 10000
n = 10000
mu = 4
sigma = 2
lambda = 1/sqrt(sigma^2 + mu^2)
M = sqrt(2 * exp(1)/pi)
accept = 0
X = numeric(b + n)
for (i in 2:(b + n)) {
    W = runif(1)
    Y = ifelse(W <= 0.5, log(2 * W)/lambda, -log(2 * (1 - W))/lambda)
    U = runif(1)
    V = M * dexp(abs(Y), lambda)/2 * U
    while (dnorm(Y, 0, sqrt(sigma^2 + mu^2)) < V) {
        W = runif(1)
        Y = ifelse(W <= 0.5, log(2 * W)/lambda, -log(2 * (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y), lambda)/2*U
    }
    A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma)) * dnorm(X[i -
        1], 0, sqrt(sigma^2 + mu^2))/((0.5 * dnorm(X[i - 1], mu, sigma) + 0.5 *
        dnorm(X[i - 1], -mu, sigma)) * dnorm(Y, 0, sqrt(sigma^2 + mu^2)))
    U = runif(1)
    if (U < A) {
        X[i] = Y
        if (i > b) {
            accept = accept + 1
        }
    } else {
        X[i] = X[i - 1]
    }
}
X = X[-(1:b)]
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
```

```
curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",
    lwd = 2)
curve(dnorm(x, 0, sqrt(sigma^2 + mu^2)), add = TRUE, col = "blue", lwd = 2)
```


print (accept/n)
\#\# [1] 0.6781
For the correct implementation of the Metropolis-Hastings algorithm with proposal PDF which doesn't depend on the current state of the Markov process $\left\{X_{i}\right\}$, we must select a suitable proposal density, so that the percentage of accepted proposal states of the algorithm is close to 100%.

If it holds that $g\left(y \mid x_{i-1}\right)=g\left(x_{i-1} \mid y\right)$ for the conditional proposal PDF, then the algorithm is called Random Walk Metropolis-Hastings. We observe that:

$$
A\left(x_{i-1}, y\right)=\min \left\{\frac{f(y)}{f\left(x_{i-1}\right)}, 1\right\}
$$

If $f(y)>f\left(x_{i-1}\right)$, then we infer that $A\left(x_{i-1}, y\right)=1$. In other words, the Markov process transitions to a proposal state with higher density than the current one with probability 1 . If the proposal state has lower density than the current one, then the Markov process transitions to it with probability $A\left(x_{i-1}, y\right) \in(0,1)$.

We consider the proposal random variable $\left(Y \mid X_{i-1}=x_{i-1}\right) \sim \mathcal{N}\left(x_{i-1}, \sigma_{p}^{2}\right)$ with conditional PDF:

$$
g\left(y \mid x_{i-1}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{p}} \exp \left\{-\frac{1}{2 \sigma_{p}^{2}}\left(y-x_{i-1}\right)^{2}\right\}
$$

b $=10000$
$\mathrm{n}=10000$
$\mathrm{mu}=4$
sigma $=2$
sigmap $=100$
lambda $=1 /$ sigmap
$M=\operatorname{sqrt}(2 * \exp (1) / p i)$
accept $=0$
$\mathrm{X}=$ numeric(b + n)
for (i in 2: $(b+n)$) \{
$\mathrm{W}=$ runif (1)
$\mathrm{Y}=\mathrm{ifelse}(\mathrm{W}<=0.5, \mathrm{X}[\mathrm{i}-1]+\log (2 * \mathrm{~W}) / \operatorname{lambda}, \mathrm{X}[\mathrm{i}-1]-\log (2 *(1-$
W)) /lambda)
$\mathrm{U}=$ runif(1)
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\operatorname{abs}(\mathrm{Y}-\mathrm{X}[\mathrm{i}-1]), \mathrm{lambda}) / 2 * \mathrm{U}$
while (dnorm(Y, X[i - 1], sigmap) < V) \{
$\mathrm{W}=$ runif (1)
$\mathrm{Y}=\mathrm{ifelse}(\mathrm{W}<=0.5, \mathrm{X}[\mathrm{i}-1]+\log (2 * \mathrm{~W}) / \operatorname{lambda}, \mathrm{X}[\mathrm{i}-1]-\log (2 *$
(1 - W))/lambda)
$\mathrm{U}=\operatorname{runif}(1)$
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\operatorname{abs}(\mathrm{Y}-\mathrm{X}[\mathrm{i}-1]), \mathrm{lambda}) / 2 * \mathrm{U}$
\}
$A=(0.5 * \operatorname{dnorm}(Y, ~ m u, ~ s i g m a) ~+~ 0.5 ~ * ~ d n o r m(Y, ~-m u, ~ s i g m a)) /(0.5 ~ * ~ d n o r m(X[i ~-~$
1], mu, sigma) +0.5 * dnorm(X[i - 1], -mu, sigma))
$\mathrm{U}=\operatorname{runif}(1)$
if (U < A) \{
$X[i]=Y$
if (i > b) \{
accept $=$ accept +1
\}
\} else \{
X[i] = X[i - 1]
\}
\}
$X=X[-(1: b)]$

```
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",
```

 lwd = 2)

plot(X, type = "ユ")


```
print(accept/n)
```

\#\# [1] 0.0502

When the variance σ_{p}^{2} of the proposal density is too high, then we observe that the algorithm proposes states too far away from the current state of the Markov process. These states have really low density, so there's a very small probability that the Markov process transitions to them. Consequently, the Markov process is trapped in the same state for large periods of time and doesn't adequately explore the entire support of the PDF f.
$\mathrm{b}=10000$
$\mathrm{n}=10000$
$\mathrm{mu}=4$
sigma $=2$

```
sigmap = 0.1
lambda = 1/sigmap
M = sqrt(2 * exp(1)/pi)
accept = 0
X = numeric(b + n)
for (i in 2:(b + n)) {
    W = runif(1)
    Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 * (1 -
        W))/lambda)
    U = runif(1)
    V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U
    while (dnorm(Y, X[i - 1], sigmap) < V) {
        W = runif(1)
        Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 *
            (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U
    }
    A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma))/(0.5 * dnorm(X[i -
            1], mu, sigma) + 0.5 * dnorm(X[i - 1], -mu, sigma))
    U = runif(1)
    if (U < A) {
            X[i] = Y
            if (i > b) {
                accept = accept + 1
            }
    } else {
        X[i] = X[i - 1]
    }
}
X = X[-(1:b)]
hist(X, "FD", freq = FALSE, main = NA, xlim = c(-11, 11), xlab = NA)
curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",
    lwd = 2)
```


plot(X, type = "1")

print (accept/n)
\#\# [1] 0.9874
When the variance σ_{p}^{2} of the proposal PDF is too low, then we observe that the algorithm proposes states very close to the current state of the Markov process. Since the Markov process transitions to proposal states with higher density than the current state with probability 1 , it tends to transition towards the closest mode of the PDF f. Consequently, the Markov process is trapped around a mode of f and doesn't adequately explore the entire support of f.
$b=10000$
$\mathrm{n}=10000$
$\mathrm{mu}=4$
sigma = 2
sigmap $=10$
lambda $=1 /$ sigmap
$M=\operatorname{sqrt}(2 * \exp (1) / p i)$

```
accept = 0
X = numeric(b + n)
for (i in 2:(b + n)) {
    W = runif(1)
    Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 * (1 -
        W))/lambda)
    U = runif(1)
    V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U
    while (dnorm(Y, X[i - 1], sigmap) < V) {
        W = runif(1)
        Y = ifelse(W <= 0.5, X[i - 1] + log(2 * W)/lambda, X[i - 1] - log(2 *
            (1 - W))/lambda)
        U = runif(1)
        V = M * dexp(abs(Y - X[i - 1]), lambda)/2 * U
    }
    A = (0.5 * dnorm(Y, mu, sigma) + 0.5 * dnorm(Y, -mu, sigma))/(0.5 * dnorm(X[i -
        1], mu, sigma) + 0.5 * dnorm(X[i - 1], -mu, sigma))
    U = runif(1)
    if (U < A) {
        X[i] = Y
        if (i > b) {
            accept = accept + 1
        }
    } else {
        X[i] = X[i - 1]
    }
}
X = X[-(1:b)]
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",
    lwd = 2)
```



```
plot(X, type = "l")
```



```
print(accept/n)
```

print(accept/n)

[1] 0.4041

```
## [1] 0.4041
```

For the correct implementation of the Random Walk Metropolis-Hastings algorithm, we must select a suitable value for the variance σ_{p}^{2} of the proposal PDF, so that the percentage of accepted proposal states of the algorithm is close to 50%.

Data Augmentation

We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF f. Suppose that the application of the inverse transform method is impossible. Consider two random variables $X \sim f$ and Y. First, suppose that it's easy to simulate from the conditional PDF $f_{X \mid Y}$. Then, we calculate that:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{Y}(y) f_{X \mid Y}(x \mid y)}{f(x)} \propto f_{Y}(y) f_{X \mid Y}(x \mid y)
$$

Alternatively, suppose that it's easy to simulate from the conditional PDF $f_{Y \mid X}$. Then, we calculate that:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) f_{Y \mid X}(y \mid x)}{f(y)} \propto f_{X}(x) f_{Y \mid X}(y \mid x)
$$

In either of these two cases, we can then proceed with applying a Gibbs sampler to alternatively simulate from the conditional distributions of X given Y and Y given X.

Example 5.15. We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF:

$$
f(x)=\frac{1}{2 \sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}+\frac{1}{2 \sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x+\mu)^{2}\right\}
$$

Consider two random variables $X \sim f$ and $Y \sim \operatorname{Bernoulli}(0.5)$. Suppose that $(X \mid Y=0) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and

```
Algorithm 5.4 Data Augmentation
    Input: Conditional PDFs \(f_{X \mid Y}, f_{Y \mid X}\), burn-in size \(b\) and sample size \(n\).
```

1: We consider an initial value X_{1}.
2: For $i=2,3, \ldots, b+n$, we iterate the following steps:
i: We generate Y following the conditional $\operatorname{PDF} f_{Y \mid X}\left(y \mid X_{i-1}\right)$.
ii: We generate X_{i} following the conditional $\operatorname{PDF} f_{X \mid Y}(x \mid Y)$.
Output: Random sample $X_{b+1}, X_{b+2}, \ldots, X_{b+n}$ following the PDF f.
$(X \mid Y=1) \sim \mathcal{N}\left(-\mu, \sigma^{2}\right)$. Then, we calculate that:

$$
\begin{aligned}
& \mathbb{P}(Y=0 \mid X=x) \propto \mathbb{P}(Y=0) f_{X \mid Y}(x \mid 0) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} \\
& \mathbb{P}(Y=1 \mid X=x) \propto \mathbb{P}(Y=1) f_{X \mid Y}(x \mid 1) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}(x+\mu)^{2}\right\}
\end{aligned}
$$

$$
(Y \mid X=x) \sim \text { Bernoulli }\left(\frac{\exp \left\{-\frac{1}{2 \sigma^{2}}(x+\mu)^{2}\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}+\exp \left\{-\frac{1}{2 \sigma^{2}}(x+\mu)^{2}\right\}}\right) \equiv \operatorname{Bernoulli}\left(\frac{1}{e^{2 \mu x / \sigma^{2}}+1}\right)
$$

b $=10000$
$\mathrm{n}=10000$
$\mathrm{mu}=4$
sigma $=2$
lambda = 1/sigma
$M=\operatorname{sqrt}(2 * \exp (1) / p i)$
X = numeric (b + n)
for (i in 2: $(b+n)$) \{
$\mathrm{U}=\mathrm{runif}(1)$
$\mathrm{Y}=\mathrm{U}<1 /(\exp (2 * \mathrm{mu} * \mathrm{X}[\mathrm{i}-1] /$ sigma^2) +1$)$
if (Y == 0) \{
$\mathrm{W}=\operatorname{runif}(1)$
$\mathrm{X}[\mathrm{i}]=\operatorname{ifelse}(\mathrm{W}<=0.5, \mathrm{mu}+\log (2 * \mathrm{~W}) / \operatorname{lambda}, \mathrm{mu}-\log (2 *(1-\mathrm{W})) / \operatorname{lambda})$
$\mathrm{U}=$ runif(1)
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\operatorname{abs}(\mathrm{X}[\mathrm{i}]-\mathrm{mu}), \operatorname{lambda}) / 2 * \mathrm{U}$
while (dnorm(X[i], mu, sigma) < V) \{
$\mathrm{W}=$ runif(1)
$\mathrm{X}[\mathrm{i}]=\operatorname{ifelse}(\mathrm{W}<=0.5, \mathrm{mu}+\log (2 * \mathrm{~W}) / \operatorname{lambda}, \mathrm{mu}-\log (2 *(1-$
W)) /lambda)
$\mathrm{U}=$ runif(1)
$\mathrm{V}=\mathrm{M} * \operatorname{dexp}(\mathrm{abs}(\mathrm{X}[\mathrm{i}]-\mathrm{mu}), \operatorname{lambda}) / 2 * \mathrm{U}$
\}
\} else \{
$\mathrm{W}=$ runif(1)

```
        X[i] = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -
            W))/lambda)
        U = runif(1)
        V = M * dexp(abs(X[i] + mu), lambda)/2 * U
        while (dnorm(X[i], -mu, sigma) < V) {
            W = runif(1)
            X[i] = ifelse(W <= 0.5, -mu + log(2 * W)/lambda, -mu - log(2 * (1 -
                W))/lambda)
            U = runif(1)
            V = M * dexp(abs(X[i] + mu), lambda)/2 * U
        }
    }
}
X = X[-(1:b)]
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
curve(0.5 * dnorm(x, mu, sigma) + 0.5 * dnorm(x, -mu, sigma), add = TRUE, col = "red",
    lwd = 2)
```


Example 5.16. We want to generate a sample $X_{1}, X_{2}, \ldots, X_{n}$ following the PDF $f(x) \propto x^{34}(1-x)^{38}(2+x)^{125}$ for $x \in[0,1]$. Consider two random variables $X \sim f$ and Y. Suppose that $(Y \mid X=x) \sim \operatorname{Bin}\left(125, \frac{x}{2+x}\right)$, For $y \in\{0,1, \ldots, 125\}$, we calculate that:

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & \propto f(x) f_{Y \mid X}(y \mid x) \\
& \propto x^{34}(1-x)^{38}(2+x)^{125}\binom{125}{y}\left(\frac{x}{2+x}\right)^{y}\left(1-\frac{x}{2+x}\right)^{125-y} \propto x^{y+34}(1-x)^{38}
\end{aligned}
$$

In other words, $(X \mid Y=y) \sim \operatorname{Beta}(y+35,39)$.
$\mathrm{b}=10000$
$\mathrm{n}=10000$
$\mathrm{X}=$ numeric $(\mathrm{b}+\mathrm{n})$
for (i in 2: $(b+n)$) \{

```
    U = runif(125)
    Y = sum(U < X[i - 1]/(2 + X[i - 1]))
    M = dbeta((Y + 34)/(Y + 72), Y + 35, 39)
    X[i] = runif(1)
    U = runif(1)
    V = M * U
    while (dbeta(X[i], Y + 35, 39) < V) {
        X[i] = runif(1)
        U = runif(1)
        V = M * U
    }
}
X = X[-(1:b)]
hist(X, "FD", freq = FALSE, main = NA, xlab = NA)
```


Simulated Annealing

We want to maximize the function $h: S \rightarrow \mathbb{R}$ with $\int_{S} e^{h(x)} d x<\infty$. We define the maximum value $h^{*}=\max _{x \in S} h(x)$ and the set of maxima $M=\left\{x \in S: h(x)=h^{*}\right\}$. For $i \in \mathbb{N}$, we consider the following PDF:

$$
f_{i}(x) \propto e^{\lambda_{i} h(x)} \propto e^{\lambda_{i}\left[h(x)-h^{*}\right]} .
$$

We observe that $h(x)-h^{*}<0$ for $x \notin M$ and $h(x)-h^{*}=0$ for $x \in M$. If $\lambda_{i} \rightarrow \infty$, then we infer that:

$$
\lim _{i \rightarrow \infty} f_{i}(x) \propto \mathbb{1}_{\{x \in M\}}
$$

If $X_{i} \sim f_{i}$ for $i \in \mathbb{N}$, the sequence of random variables $\left\{X_{i}\right\}$ converges in distribution to a random variable which follows the uniform distribution on the set M. In order to simulate from the $\operatorname{PDF} f_{i}$ we usually apply a Random Walk Metropolis-Hastings algorithm with $\lambda_{i}=\lambda_{1} \log i$ or $\lambda_{i}=\lambda_{1} r^{i-1}$ for $\lambda_{1}>0$ and $r>1$.

Example 5.17. We want to maximize the function $h(x)=[\cos (50 x)+\sin (20 x)]^{2}$ for $x \in[0,1]$. We consider the

Algorithm 5.5 Simulated Annealing
Input: Function h, conditional proposal PDF g, sequence λ_{i} and sample size n.
1: We consider an initial value X_{1}.
2: For $i=2,3, \ldots, n$, we iterate the following steps:
i: We generate Y following the conditional PDF $g\left(y \mid X_{i-1}\right)$.
ii: We generate $U \sim \operatorname{Unif}[0,1]$ and calculate the acceptance probability:

$$
A\left(X_{i-1}, Y\right)=\min \left\{e^{\lambda_{i}\left[h(Y)-h\left(X_{i-1}\right)\right]}, 1\right\}
$$

iii: If $U<A\left(X_{i-1}, Y\right)$, then we let $X_{i}=Y$. Otherwise, we let $X_{i}=X_{i-1}$.
Output: Maximum value $h^{*}=\max _{i} h\left(X_{i}\right)$.
proposal random variable $\left(Y \mid X_{i-1}=x_{i-1}\right) \sim \operatorname{Unif}\left[x_{i-1}-s_{i}, x_{i-1}+s_{i}\right]$ with the following conditional PDF:

$$
g\left(y \mid x_{i-1}\right)=\frac{1}{2 s_{i}}
$$

```
h = function(x) {
    ifelse(x >= 0 & x <= 1, (cos(50* x) + sin(20* x) )^2, 0)
}
curve(h(x), lwd = 2)
```



```
optimize(h, c(0, 1), maximum = TRUE)
## $maximum
## [1] 0.379125
##
## $objective
```

\#\# [1] 3.832543
$\mathrm{n}=10000$
lambda1 = 1
X = numeric(n)
for (i in 2:n) \{
lambda $=\operatorname{lambda1} * \log (i)$
s = sqrt(lambda)
$\mathrm{V}=$ runif(1)
$\mathrm{Y}=2 * \mathrm{~s} * \mathrm{~V}+\mathrm{X}[\mathrm{i}-1]-\mathrm{s}$
$\log A=\operatorname{lambda} *(h(Y)-h(X[i-1]))$
$\mathrm{U}=\mathrm{runif}(1)$
$X[i]=i f e l s e(\log (U)<\log A, Y, X[i-1])$
\}
plot(X, type = "l", ylim = c(0, 1))

hstar $=\max (\mathrm{h}(\mathrm{X}))$
print(hstar)
\#\# [1] 3.832543
I = which(h(X) == hstar)
print(unique(X[I]))
\#\# [1] 0.3791546

6 Bootstrap Method

Definition 6.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample. For $x \in \mathbb{R}$, we define the empirical CDF of the random sample as follows:

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{X_{i} \leqslant x\right\}}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample following the CDF F with parameter θ and an estimator $T(X)$ of θ. We want to estimate the expected value $\mathbb{E}[h(T)]$. Suppose that it's not efficient to simulate from the CDF F. On the contrary, we can easily generate random samples $X_{*}^{(1)}, X_{*}^{(2)}, \ldots, X_{*}^{(B)}$ following the empirical CDF F_{n} of the random sample $X_{1}, X_{2}, \ldots, X_{n}$. If $T_{j}^{*}=T\left(X_{*}^{(j)}\right)$ for $j=1,2, \ldots, B$, then we can estimate the expected value $\mathbb{E}[h(T)]$ as follows:

$$
\frac{1}{B} \sum_{j=1}^{B} h\left(T_{j}^{*}\right)
$$

```
Algorithm 6.1 Non-Parametric Bootstrap
    Input: Random sample \(X\), statistic \(T(X)\) and bootstrap sample size \(B\).
    For \(j=1,2, \ldots, B\), we iterate the following steps:
    i: We generate \(U_{1}, \ldots, U_{n} \sim \operatorname{Unif}[0,1]\) and let \(I_{i}=\left\lfloor n U_{i}\right\rfloor+1\) for \(i=1,2, \ldots, n\).
    ii: We let \(X_{*}^{(j)}=\left(X_{I_{1}}, X_{I_{2}}, \ldots, X_{I_{n}}\right)\) and \(T_{j}^{*}=T\left(X_{*}^{(j)}\right)\).
    Output: Bootstrap statistics \(T_{1}^{*}, T_{2}^{*}, \ldots, T_{B}^{*}\).
```

Example 6.1. Let $U_{1}, U_{2}, \cdots \sim \operatorname{Unif}[0,1]$ be a sequence of independent random variables. We define the random variable:

$$
X=\sup \left\{k \in \mathbb{N}: U_{1}<U_{2}<\cdots<U_{k-1}\right\}
$$

Consider the parameter $\theta=\sqrt{\mathbb{E}\left(X^{2}\right)}$ and a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the distribution of X. We define an estimator of θ as follows:

$$
T(X)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}
$$

We want to estimate the expected value, the variance, the bias and the mean squared error of the estimator $T(X)$. Additionally, we want to construct a $100(1-\alpha) \%$ confidence interval for θ.

```
X = c(2, 4, 3, 2, 2, 2, 2, 3, 3, 2)
n = length(X)
t = sqrt(mean(X^2))
B = 10000
Tstar = numeric(B)
for (j in 1:B) {
    U = runif(n)
    I = floor(n * U) + 1
    Xstar = X[I]
    Tstar[j] = sqrt(mean(Xstar^2))
```

Tbar $=$ mean(Tstar)
print(Tbar)
\#\# [1] 2.577908
VarT $=$ mean $\left((\text { Tstar }- \text { Tbar })^{\wedge} 2\right)$
print (VarT)
\#\# [1] 0.05363952
bias = mean (Tstar - t)
print(bias)
\#\# [1] -0.01052766
MSE $=\operatorname{mean}\left((\text { Tstar }-t)^{\wedge} 2\right)$
print(MSE)
\#\# [1] 0.05375035

We define:

$$
\bar{T}^{*}=\frac{1}{B} \sum_{j=1}^{b} T_{j}^{*}, \quad S_{*}^{2}=\frac{1}{B} \sum_{j=1}^{B}\left(T_{j}^{*}-\bar{T}^{*}\right)^{2} .
$$

Then, we get the following bootstrap normal confidence interval for θ :

$$
\left[\bar{T}^{*}-z_{1-\alpha / 2} S_{*}, \bar{T}^{*}+z_{1-\alpha / 2} S_{*}\right]
$$

Alternatively, we can use the following bootstrap percentile confidence interval for θ :

$$
\left[T_{(\lfloor B \alpha / 2\rfloor)}^{*}, T_{(\lceil B(1-\alpha / 2)\rceil)]}^{*}\right]
$$

Finally, we can use the following bootstrap pivotal confidence interval for θ :

$$
\left[2 T-T_{(\lceil B(1-\alpha / 2)\rceil)}^{*}, 2 T-T_{(\lfloor B \alpha / 2\rfloor)}^{*}\right]
$$

```
alpha = 0.05
I = c(Tbar - qnorm(1 - alpha/2) * sqrt(VarT), Tbar + qnorm(1 - alpha/2) * sqrt(VarT))
print(I)
## [1] 2.123976 3.031840
Tstar = sort(Tstar)
I = c(Tstar[floor(B * alpha/2)], Tstar[ceiling(B * (1 - alpha/2))])
print(I)
## [1] 2.121320 3.016621
```

```
I = c(2 * t - Tstar[ceiling(B * (1 - alpha/2))], 2 * t - Tstar[floor(B * alpha/2)])
```

print(I)
\#\# [1] 2.1602513 .055551
Example 6.2. Let $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a random sample. We know that the statistic of the one-sided test of the hypotheses $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu<\mu_{0}$ is equal to:

$$
T(X)=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

$\mathrm{n}=20$
$\mathrm{mu}=0$
sigma $=2$
$\mathrm{U}=$ runif ($\mathrm{n} / 2$)
$\mathrm{D}=-2 * \log (\mathrm{U})$
$\mathrm{V}=$ runif($\mathrm{n} / 2$)
Theta $=2 *$ pi $* V$
$Z=\operatorname{sqrt}(D) * c(\cos ($ Theta $), \sin ($ Theta $))$
$\mathrm{X}=\operatorname{sigma} * \mathrm{Z}+\mathrm{mu}$

Algorithm 6.2 Normal Hypothesis Test by Use of Non-Parametric Bootstrap
 Input: Random sample X, statistic $T(X)$ and bootstrap sample size B.

1: For $j=1,2, \ldots, B$, we iterate the following steps:
i: We generate $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}[0,1]$ and let $I_{i}=\left\lfloor n U_{i}\right\rfloor+1$ for $i=1,2, \ldots, n$.
ii: We let $X_{*}^{(j)}=\left(X_{I_{1}}, X_{I_{2}}, \ldots, X_{I_{n}}\right)$.
iii: We calculate the sample average \bar{X}_{j}^{*} and the square root S_{j}^{*} of the sample variance of $X_{*}^{(j)}$.
iv: We calculate the statistic:

$$
T_{j}^{*}=\frac{\bar{X}_{j}^{*}-\bar{X}}{S_{j}^{*} / \sqrt{n}} .
$$

2: We calculate:

$$
N^{*}=\sum_{j=1}^{B} \mathbb{1}_{\left\{T_{j}^{*} \leqslant T\right\}}, \quad p^{*}=\frac{N^{*}+1}{B+1} .
$$

Output: Estimated p-value p^{*} of the hypothesis test.

```
mu0 = 1
alpha = 0.05
Xbar = mean(X)
S = sd(X)
t = (Xbar - mu0) * sqrt(n)/S
pval = pt(t, n - 1)
print(pval)
```

\#\# [1] 0.01179182
$B=10000$
Tstar $=$ numeric (B)
for (j in 1:B) \{
$\mathrm{U}=\operatorname{runif}(\mathrm{n})$
I = floor (n * U) + 1
Xstar $=\mathrm{X}[\mathrm{I}]$
Xbarstar $=$ mean(Xstar)
Sstar = sd(Xstar)
Tstar [j] = (Xbarstar - Xbar) * sqrt(n)/Sstar
\}
pval $=($ sum $($ Tstar $<=t)+1) /(B+1)$
print(pval)
\#\# [1] 0.00909909

Algorithm 6.3 Normal Hypothesis Test by Use of Parametric Bootstrap
Input: Random sample X, statistic $T(X)$ and bootstrap sample size B.
1: We calculate the MLE of σ^{2} under $H_{0}: \mu=\mu_{0}$ as follows:

$$
\widehat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}
$$

2: For $j=1,2, \ldots, B$, we iterate the following steps:
i: We generate a random sample $X_{*}^{(j)}$ of size n following the $N\left(\mu_{0}, \widehat{\sigma}_{0}^{2}\right)$ distribution.
ii: We calculate the sample average \bar{X}_{j}^{*} and the square root S_{j}^{*} of the sample variance of $X_{*}^{(j)}$.
iii: We calculate the statistic:

$$
T_{j}^{*}=\frac{\bar{X}_{j}^{*}-\mu_{0}}{S_{j}^{*} / \sqrt{n}}
$$

3: We calculate:

$$
N^{*}=\sum_{j=1}^{B} \mathbb{1}_{\left\{T_{j}^{*} \leqslant T\right\}}, \quad p^{*}=\frac{N^{*}+1}{B+1} .
$$

Output: Estimated p-value p^{*} of the hypothesis test.

```
sigma0 = sqrt(mean((X - mu0) ^2))
for (j in 1:B) {
    U = runif(n/2)
    D = -2 * log(U)
    V = runif(n/2)
    Theta = 2 * pi * V
    Z = sqrt(D) * c(cos(Theta), sin(Theta))
```

```
    Xstar = sigma0 * Z + mu0
    Xbarstar = mean(Xstar)
    Sstar = sd(Xstar)
    Tstar[j] = (Xbarstar - mu0) * sqrt(n)/Sstar
}
pval = (sum(Tstar <= t) + 1)/(B + 1)
print(pval)
## [1] 0.01129887
```

